|
(1)
|
|
(2)
|
trong đó:
V(z) là tốc độ gió tại chiều cao z;
z là chiều cao so với mặt đất;
zr chiều cao chuẩn so với mặt đất được sử dụng để điều chỉnh biên dạng;
z0 là chiều dài thô;
α là số mũ trượt gió (hoặc luật lũy thửa).
3.63
Phân bố tốc độ gió (wind speed
distribution)
Hàm phân bố xác suất, được sử dụng để
mô tả phân bố tốc
độ gió trong một khoảng thời gian dài.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
PR(V0) = 1 - exp[-π(V0/2Vave)2]
PW(V0) = 1 -
exp[-(V0/C)k]
(3)
và
(4)
trong đó:
P(V0) là hàm xác suất
tích lũy, nghĩa là xác suất để có V<V0;
V0 là tốc độ
gió (giới hạn);
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
C tham số tỷ lệ của
hàm Weibull;
k tham số hình dạng của
hàm Weibull;
Γ hàm gamma.
Cả C và k có thể được đánh giá từ
số liệu thực. Hàm Rayleigh trùng với hàm Weibull nếu chọn k = 2, còn C và Vave
đáp ứng điều kiện nêu trong Công thức 4 đối với k = 2.
Các hàm phân bố biểu diễn xác suất
tích lũy khi tốc độ gió thấp hơn V0. Do đó (P(V1) - P(V2)), nếu
đánh giá giữa các giới hạn V1 và V2 quy định, sẽ cho biết
khoảng thời gian mà tốc độ gió nằm trong các giới hạn này. Lấy vi phân các hàm
phân bố sẽ cho các hàm mật độ xác suất tương ứng.
3.64
Trượt gió (wind shear)
Biến động tốc độ gió ngang qua mặt phẳng
vuông góc với hướng gió.
3.65
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
α
Cũng thường được biết đến như bậc luật
lũy thửa, xem 3.62.
3.66
Tốc độ gió (wind speed)
V
Tốc độ chuyển động của lượng nhỏ không
khí bao quanh một điểm cụ thể trong không gian.
CHÚ THÍCH: Đây cũng là độ lớn
của vận tốc gió cục bộ (vectơ) (xem 3.69).
3.67
Hệ thống máy phát tuabin gió (wind
turbine generator system (wind turbine))
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3.68
Vị trí tuabin gió (wind
turbine site)
Vị trí của một tuabin gió đứng độc lập
hoặc trong một trang trại gió.
3.69
Vận tốc gió (wind velocity)
Vecto chỉ phương chuyển động, tính bằng
min, của không khí xung quanh điểm đang xét, độ lớn của vecto sẽ bằng với tốc độ
chuyển động của “khối” không khí này (tức là tốc độ gió cục bộ).
CHÚ THÍCH: Vectơ tại điểm bất kỳ là đạo
hàm theo thời gian của vector vị trí của “khối” không khí dịch chuyển
qua điểm đó.
3.70
Hệ thống điện tuabin gió (wind
turbine electrical system)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3.71
Đầu nối của tuabin gió (wind
turbine terminals)
Điểm hoặc các điểm được xác định bởi
nhà cung cấp tuabin gió, tại đó tuabin gió có thể được nối đến hệ thống thu gom
điện năng. Các đầu nối này bao gồm cả kết nối cho các mục đích truyền năng lượng
và truyền thông.
3.72
Xoay tuabin (yawing)
Trục rôto xoay quanh trục thẳng đứng (chỉ đối với các
tuabin gió trục ngang).
3.73
Độ xoay tuabin (yaw
misalignment)
Độ xoay của trục rôto tuabin gió so với
hướng gió.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
4.1 Ký hiệu
và đơn vị
C
tham số tỷ lệ của hàm phân bố
Weibull
[m/s]
CCT
tham số hiệu chỉnh kết cấu
theo luồng xoáy
CT
hệ số áp lực hướng trục
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Coh
hàm liên kết
D
đường kính rôto
f
tàn số
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
giá trị sức bền vật liệu thiết kế
fk
giá trị sức bền vật liệu đặc trưng
[-]
Fd
giá trị tải thiết kế
[-]
Fk
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[-]
Iref
giá trị cường độ luồng xoáy mong muốn
tại chiều cao của hub ở tốc độ gió trung bình lấy trong 10 min là 15 m/s
[-]
Ieff
cường độ luồng xoáy hiệu dụng
[-]
k
tham số hình dạng của
hàm phân bố Weibull
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
K
hàm Bessel sửa đổi
[-]
L
tham số tỷ lệ tích
phân luồng xoáy đẳng hướng
[m]
Le
tham số tỷ lệ liên kết
[m]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tham số tỷ lệ tích phân
thành phần vận tốc
[m]
m
bậc đường cong Wöhler
[-]
ni
số chu kỳ mỏi tính được trong bin tải trọng thứ
i
[-]
N(.)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[-]
N
tần suất xuất hiện của trạng thái cực
trị
[năm]
p
xác suất chịu được
[-]
PR(V0)
phân bố xác suất Rayleigh, tức là
xác suất để có V<V0
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
PW(V0)
phân bố xác suất Weibull
[-]
r
độ lớn hình chiếu vector riêng biệt
[m]
si
mức ứng suất (hoặc sức căng) liên
quan đến số lượng chu kỳ đếm được trong bin thứ i
[-]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hàm mật độ phổ năng lượng cho thành
phần vận tốc gió theo chiều dọc
[m2/s]
Sk
phổ thành phần vận tốc một phía
[m2/s]
T
thời gian gió giật đặc trưng
[s]
t
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[s]
V
tốc độ gió
[m/s]
V(z)
tốc độ gió ở độ cao z
[m/s]
Vave
tốc độ gió trung bình hàng năm tại
chiều cao của hub
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Vcg
độ lớn gió giật liên kết cực trị
trên toàn bộ diện tích quét của rôto
[m/s]
VeN
tốc độ gió cực trị dự kiến (lấy
trung bình trong 3 s), có tần suất xuất hiện là N năm.
Ve1 và Ve50 trong 1
năm và 50 năm tương ứng
[m/s]
Vgust
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[m/s]
Vhub
tốc độ gió tại chiều cao của hub
[m/s]
Vin
tốc độ gió đóng mạch
[m/s]
V0
tốc độ gió giới hạn trong mô hình
phân bố tốc độ gió
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Vout
tốc độ gió ngắt mạch
[m/s]
Vr
tốc độ gió danh định
[m/s]
Vref
tốc độ gió chuẩn
[m/s]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
thành phần vận tốc gió theo chiều dọc
để mô tả trượt gió quá độ theo chiều ngang
[m/s]
V(z,t)
thành phần vận tốc gió theo chiều dọc
để mô tả biến động quá độ đối với các điều kiện trượt gió và gió giật cực trị
[m/s]
x, y, z
hệ thống tọa độ kết hợp được sử dụng
để mô tả trường gió; gió dọc(theo chiều dọc), gió ngang
(hai bên) và chiều cao tương ứng
[m]
zhub
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[m]
zr
chiều cao chuẩn so với mặt đất
[m]
z0
chiều dài thô (đối với biên dạng gió
logarit)
[m]
α
bậc luật lũy thửa trượt gió
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
β
tham số đối với mô hình
thay đổi hướng cực trị
[-]
δ
hệ số biến động
[-]
Γ
hàm gamma
[-]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hệ số an toàn từng phần cho
các tải
[-]
γm
hệ số an toàn từng phần cho vật liệu
[-]
γn
hệ số an toàn từng phần cho hậu quả
của sự cố
[-]
θ(t)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[deg]
θcg
góc lệch lớn nhất so với hướng của tốc
độ gió trung bình trong điều kiện gió giật
[deg]
θe
độ thay đổi hướng cực trị với tần suất
xuất hiện là N năm
[deg]
Λ1
tham số tỷ lệ luồng xoáy được định
nghĩa là bước sóng mà tại đó mật độ phổ năng lượng theo chiều
dọc, không thứ nguyên fS1(f)/σ12 bằng 0,05
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
độ lệch chuẩn luồng xoáy ước tính
[m/s]
độ lệch chuẩn luồng xoáy ước tính hiệu
dụng
[m/s]
độ lệch chuẩn luồng xoáy luồng rẽ
khí
[m/s]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
độ lệch luồng xoáy luồng rẽ khí
trung tâm lớn nhất
[m/s]
độ lệch chuẩn của độ lệch
chuẩn luồng xoáy ước tính
[m/s]
σ1
độ lệch chuẩn vận tốc gió theo chiều
dọc tại chiều cao của hub
[m/s]
σ2
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[m/s]
σ3
độ lệch chuẩn vận tốc gió thẳng đứng
tại chiều cao của hub
[m/s]
E<>
giá trị kỳ vọng của tham số bên
trong dấu móc
[-]
Var<>
phương sai của tham số bên trong dấu
móc
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
4.2 Các từ
viết tắt
A
bất thường (đối với hệ số an toàn từng
phần)
a.c.
dòng điện xoay chiều
d.c.
dòng điện một chiều
DLC
trường hợp tải thiết kế
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
gió giật liên kết cực trị có hướng
thay đổi
EDC
đổi hướng gió cực trị
EOG
gió giật vận hành cực trị
ETM
mô hình luồng xoáy cực trị
EWM
mô hình tốc độ gió cực trị
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
trượt gió cực trị
F
độ mỏi
N
bình thường và cực trị (đối với hệ số
an toàn từng phần)
NWP
mô hình biên dạng gió bình thường
NTM
mô hình luồng xoáy
bình thường
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
cấp tuabin gió IEC đặc biệt
T
vận chuyển và lắp đặt (đối với hệ số
an toàn từng phần)
U
tới hạn
5 Các yếu tố chính
5.1 Quy định
chung
Điều 5 đưa ra các yêu cầu kỹ thuật và
thiết kế để đảm bảo an toàn cho kết cấu, các hệ thống cơ, điện và điều khiển
tuabin gió. Thông số kỹ thuật của các yêu cầu này áp dụng cho việc thiết kế, sản
xuất, lắp đặt và sổ tay hướng dẫn
sử dụng và bảo trì tuabin gió và các quá trình quản lý chất lượng liên quan.
Ngoài ra, điều
này còn đề cập đến cả các quy trình an toàn, đã được thiết lập theo các thực tiễn
khác nhau được sử dụng trong quá trình lắp đặt, vận hành và bảo trì tuabin gió.
5.2 Các
phương pháp thiết kế
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Dữ liệu từ thử nghiệm tỷ lệ thực của một
tuabin gió có thể được sử dụng
để tăng độ tin cậy của các giá trị thiết kế dự báo và để kiểm tra mô hình kết cấu động học
và các tình huống thiết kế.
Kiểm tra tính đầy đủ của thiết
kế bằng tính toán và/hoặc
bằng thử nghiệm.
Nếu kết quả thử nghiệm
được sử dụng trong việc kiểm tra này, các điều kiện bên ngoài trong thử nghiệm
này phải được thể
hiện
để phản ánh các giá trị đặc trưng và tình huống thiết kế xác định trong tiêu
chuẩn. Việc lựa chọn các điều kiện thử nghiệm, kể cả tải thử nghiệm,
phải tính đến hệ số an toàn liên quan.
5.3 Cấp an
toàn
Tuabin gió phải được thiết kế theo một
trong hai cấp an toàn sau:
- cấp an toàn thông thường áp dụng khi
một sự cố dẫn đến rủi ro gây thương tích cho người hoặc hậu quả xã hội hoặc
kinh tế khác;
- cấp an toàn đặc biệt áp dụng khi các yêu cầu an
toàn được xác định theo các quy chuẩn kỹ thuật quốc gia và/hoặc các yêu cầu an
toàn được thỏa thuận giữa nhà chế tạo và khách hàng.
Đối với các tuabin gió cấp an toàn
thông thường, các hệ số an toàn từng phần được quy định trong 7.6 của tiêu chuẩn
này.
Đối với các tuabin gió cấp an toàn đặc
biệt, các hệ số an toàn từng phần phải được thỏa thuận giữa nhà chế tạo và
khách hàng. Tuabin gió được thiết kế theo cấp an toàn đặc biệt là tuabin gió cấp
S như định nghĩa trong 6.2.
5.4 Đảm bảo
chất lượmg
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hệ thống quản lý chất lượng cần phù hợp
với các yêu cầu của TCVN ISO 9001.
5.5 Ghi nhãn
tuabin gió
Tối thiểu phải có các thông tin dưới
đây, hiển thị một cách bền và rõ ràng, trên tấm nhãn của tuabin gió:
- nhà chế tạo và quốc gia
chế tạo tuabin gió;
- kiểu và số seri;
- năm sản xuất;
- công suất danh định;
- tốc độ gió chuẩn, Vref;
- dải tốc độ gió làm việc tại chiều cao của hub,
Vin - Vout;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- cấp tuabin gió (xem Bảng 1);
- điện áp danh định ở các đầu nối
tuabin gió;
- tần số tại các đầu nối tuabin gió hoặc
dải tần số
trong trường hợp biến động danh nghĩa lớn hơn 2 %.
6 Điều kiện bên
ngoài
6.1 Quy định
chung
Các điều kiện bên ngoài mô tả trong điều
này phải được xét đến khi thiết kế tuabin gió.
Các tuabin gió phải chịu các điều kiện
môi trường và điện mà có thể ảnh hưởng đến việc mang tải, độ bền và hoạt động của
chúng. Để đảm bảo mức độ thích hợp về an toàn và độ tin cậy, các tham số môi
trường, điện và đất phải được tính đến khi thiết kế và phải được nêu rõ trong
các tài liệu thiết kế.
Các điều kiện môi trường được chia ra
thành điều kiện gió và các điều kiện môi trường khác. Các điều
kiện điện được nêu trong các điều kiện của mạng điện. Các tính chất của đất liên quan đến
thiết kế nền móng của tuabin gió.
Các điều kiện bên ngoài được chia
thành các loại bình thường và loại cực trị. Các điều kiện bên ngoài bình thường
nói chung liên quan đến các điều kiện tải thường xuyên của kết cấu, trong khi
các điều kiện cực trị bên ngoài thể hiện
các điều kiện thiết kế bên ngoài rất hiếm. Các trường hợp tải thiết kế phải bao gồm
các kết hợp tiềm ẩn quan trọng
của các điều kiện bên ngoài này với các chế độ vận hành của tuabin gió và các
tình huống thiết kế khác.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các điều kiện bình thường và cực trị,
mà sẽ được xem xét khi thiết kế theo các cấp tuabin gió, được quy định trong
các điều dưới đây.
6.2 Phân cấp
tuabin gió
Các điều kiện bên ngoài cần xem xét
khi thiết kế phụ thuộc vào vị trí hoặc loại vị trí dự kiến để lắp đặt tuabin
gió. Các cấp tuabin gió
được xác định theo các tham số tốc độ gió và luồng xoáy. Mục đích của phân cấp
là nhằm bao quát hầu
hết các ứng dụng. Các giá trị tham số tốc độ gió và luồng xoáy nhằm thể hiện
nhiều vị trí khác nhau mà không đưa ra thể hiện chi tiết cho vị trí cụ thể bất
kỳ, xem 11.3. Việc phân cấp tuabin gió đưa ra một giới hạn bền vững được xác định
rõ ràng theo các tham số tốc độ gió và luồng xoáy. Bảng 1 quy định các tham số
cơ bản, để xác định
các cấp tuabin gió.
Ngoài ra, định nghĩa thêm một cấp tuabin gió
nữa, cấp S, để sử dụng khi
nhà thiết kế và/hoặc khách hàng yêu cầu điều kiện gió đặc biệt hoặc các điều kiện
bên ngoài khác hoặc cấp an toàn đặc biệt, xem 5.3. Các giá trị thiết kế cho các
tuabin gió cấp S phải được nhà thiết kế chọn và được quy định trong tài liệu
thiết kế. Đối với các thiết kế đặc biệt như vậy, các giá trị được chọn đối với
các điều kiện thiết kế phải phản ánh môi trường tối thiểu có độ khắc nghiệt như dự kiến
cho việc sử dụng các tuabin gió.
Các điều kiện bên
ngoài cụ thể được xác định đối với cấp I, II và III không nhằm bao quát các điều
kiện ngoài khơi hay các điều kiện gió trong các cơn bão nhiệt đới
như cuồng phong, lốc xoáy, gió bão. Các điều kiện như vậy có thể yêu cầu thiết
kế tuabin gió cấp S.
Bảng 1 - Tham
số cơ bản của
các cấp tuabin gió1
Cấp tuabin gió
I
II
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
S
Vref
(m/s)
50
42,5
37,5
Các giá trị
được nhà
thiết
kế quy định
A
Iref (-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
B
Iref (-)
0,14
C
Iref (-)
0,12
Trong Bảng 1, các giá trị tham số
áp dụng ở chiều cao của hub và
Vref là tốc độ gió
chuẩn lấy trung bình trong 10 min,
A cấp có đặc tính luồng xoáy cao,
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
C cấp có đặc tính luồng xoáy
thấp, và
lref giá trị kỳ vọng của cường
độ2
luồng xoáy ở tốc độ 15 m/s.
Ngoài những tham số cơ bản này, một vài
tham số quan trọng khác được yêu cầu để có thể quy định đầy đủ các điều kiện
bên ngoài cần sử dụng khi thiết kế tuabin gió. Trong trường hợp các cấp tuabin gió
từ lA đến lllC, được gọi là các cấp tuabin gió
tiêu chuẩn, giá trị của các tham số bổ sung này được quy định trong 6.3, 6.4 và
6.5.
Tuổi thọ thiết kế đối với các cấp
tuabin gió từ cấp I đến cấp III phải ít nhất là 20 năm.
Đối với tuabin gió cấp S, trong tài liệu
thiết kế, nhà chế tạo phải mô tả các mô hình được sử dụng và các giá trị của
các tham số thiết kế. Khi chấp nhận các mô hình trong Điều 6, công bố các giá
trị của các tham số sẽ là đủ. Tài liệu thiết kế tuabin gió cấp S phải có các
thông tin liệt kê trong Phụ lục A.
Các chữ viết tắt được thêm vào trong dấu
ngoặc đơn của các tiêu đề điều trong phần còn lại của điều này được sử dụng để mô tả các điều
kiện gió đối với các trường hợp tải thiết kế quy định trong 7.4.
6.3 Điều kiện
gió
Một tuabin gió phải được thiết kế để
chịu được một
cách an toàn các điều kiện gió được
xác định theo cấp
tuabin gió đã chọn.
Các giá trị thiết kế của các điều kiện
gió phải được quy định rõ ràng trong tài liệu thiết kế.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các điều kiện gió bao gồm cả luồng trung
bình không đổi, trong nhiều trường hợp, được kết hợp với một biên dạng gió giật
xác định hoặc với luồng xoáy. Trong mọi trường hợp, sẽ phải xem xét ảnh hưởng
khi độ nghiêng luồng trung bình so với mặt phẳng nằm ngang lên đến
8o. Góc nghiêng luồng gió này phải được giả định là bất biến theo
chiều cao.
Cụm từ “luồng xoáy” để chỉ các
biến ngẫu nhiên trong vận tốc gió từ các trung bình trong 10 min. Khi được sử dụng,
mô hình luồng xoáy phải
có các ảnh hưởng của việc thay đổi tốc độ gió, trượt và hướng gió và
cho phép lấy mẫu quay theo các trượt gió khác nhau. Ba thành phần vector vận tốc
gió luồng xoáy được xác định là:
- hướng theo chiều dọc - dọc theo hướng
vận tốc gió trung bình;
- hướng theo chiều ngang - nằm ngang và
vuông góc với hướng dọc, và
- hướng lên - vuông góc với cả hướng theo
chiều dọc và hướng theo chiều ngang, nghĩa là nghiêng so với đường
thẳng đứng một góc nghiêng trung bình của luồng.
Đối với các cấp tuabin gió tiêu chuẩn,
trường vận tốc gió ngẫu nhiên cho các mô hình luồng xoáy phải thỏa mãn các yêu cầu
sau:
a) độ lệch chuẩn của luồng xoáy, σ1,
với các giá trị được cho trong các điều dưới đây, phải được giả thiết là bất biến
theo chiều cao. Các thành phần vuông góc với hướng gió trung bình phải có độ lệch
chuẩn tối thiểu như sau3:
- Thành phần hướng theo chiều ngang:
σ2 ≥ 0,7σ1
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
σ3 ≥ 0,5σ1
b) tham số tỷ lệ luồng xoáy theo chiều
dọc, Λ1, tại chiều
cao của hub z phải được cho bởi
(5)
Mật độ phổ công suất của
ba thành phần trực giao S1(f), S2(f)và S3(f) phải
gần như tiệm cận tới các dạng sau theo tần số khi tăng phạm vi quán tính:
(6)
(7)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Mô hình luồng xoáy đề xuất
nhằm đáp ứng các
yêu cầu này là mô
hình luồng xoáy trượt nhất quán Mann trong Phụ lục B. Mô hình khác thường được
sử dụng đáp ứng các yêu cầu này cũng được nếu trong Phụ lục B. Các mô hình khác
phải được sử dụng một cách thận trọng, vì việc lựa chọn có thể ảnh hưởng đáng kể đến tải.
6.3.1 Điều kiện
gió bình thường
6.3.1.1 Phân bố tốc
độ gió
Phân bố tốc độ gió là quan trọng đối với
thiết kế tuabin gió vì nó quyết định
tần suất xuất hiện các điều kiện tải riêng rẽ đối với các tình huống thiết kế
thông thường. Giá trị trung bình của tốc độ gió trong khoảng thời gian 10 min
phải được giả định là tuân
theo phân bố Rayleigh ở độ cao của hub được cho bởi
PR(Vhub)
= 1 - exp[-π(Vhub/2Vave)2]
(8)
trong đó, trong các cấp tuabin gió
tiêu chuẩn, Vave phải được chọn như sau
Vave= 0,2Vref
(9)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Biên dạng gió, V(z), chỉ tốc độ gió
trung bình như một hàm số của chiều cao z so với mặt đất. Trong trường hợp các
cấp tuabin gió tiêu chuẩn, biên dạng gió thông thường phải được đưa ra theo luật
lũy thừa:
V(z) = Vhub(z/zhub)α
(10)
Số mũ luật lũy thừa, α, phải được
giả định là 0,2.
Biên dạng gió giả định được sử dụng để
xác định trượt gió thẳng đứng trung bình ngang qua diện tích quét của
rôto.
6.3.1.3 Mô hình luồng
xoáy thông thường (NTM)
Đối với mô hình luồng xoáy thông thường,
giá trị đại diện cho độ lệch chuẩn của luồng xoáy σ1, phải được cho bởi
90 % phân bố 4 đối với tốc độ gió tại chiều cao của
hub cho trước. Giá trị đối với các cấp tuabin gió tiêu chuẩn phải được cho bởi
σ1 = Iref(0,75Vhub
+ b); b
= 5,6 m/s
(11)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các giá trị lref được cho
trong Bảng 1.
Hình 1 a - Độ
lệch chuẩn của luồng xoáy đối với mô hình luồng xoáy thông
thường (NTM)
Hình 1b - Cường
độ luồng xoáy đối với mô hình luồng xoáy thông thường (NTM)
Hình 1 - Mô
hình luồng xoáy thông thường (NTM)
6.3.2 Điều kiện gió
cực trị
Các điều kiện gió cực trị bao gồm các
sự kiện trượt gió, cũng như các tốc độ gió đỉnh do bão và các thay đổi nhanh của
tốc độ và hướng gió.
6.3.2.1 Mô hình tốc độ gió cực
trị (EWM)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Đối với mô hình gió cực trị ổn định,
tốc độ gió cực trị, Ve50, có tần suất xuất hiện
là 50 năm, và tốc độ gió cực trị, Ve1 có tần suất
xuất hiện là 1 năm, phải được tính là hàm số của chiều cao z, sử dụng các công
thức sau:
(12)
và Ve1(z)
= 0,8 Ve50 (z)
(13)
Trong mô hình gió cực trị ổn định, giới
hạn cho phép đối với các độ lệch ngắn hạn so với hướng gió trung bình phải được
thực hiện bằng giả định độ
xoay tuabin không đổi trong phạm vi ± 15o.
Đối với mô hình tốc độ gió cực trị luồng
xoáy, tốc độ gió lấy trung bình trong 10 min là hàm số của z có các tần suất xuất
hiện 50 năm và 1 năm tương ứng được cho bởi
(14)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(15)
Độ lệch chuẩn của luồng xoáy theo chiều
dọc5
phải là
σ1 = 0,11Vhub
(16)
6.3.2.2 Gió giật hoạt
động cực trị (EOG)
Độ lớn gió giật tại chiều cao của hub
Vgust 6 được cho đối
với các cấp tuabin gió tiêu chuẩn bằng quan hệ sau:
(17)
trong đó:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Λ1 tham số tỷ lệ luồng
xoáy, theo công thức (5);
D đường kính rôto.
Tốc độ gió phải được xác định theo
công thức:
đối với 0 ≤ t ≤ T
trường
hợp khác
(18)
trong đó:
V(z) được xác định theo
công thức (10)
T= 10,5 s.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hình 2 - Ví dụ
về gió giật hoạt động cực trị
6.3.2.3 Mô hình luồng
xoáy cực trị (ETM)
Mô hình luồng xoáy cực trị phải sử dụng
mô hình biên dạng gió bình thường trong 6.3.1.2 và luồng xoáy có độ lệch chuẩn
thành phần theo chiều dọc cho bởi
(19)
6.3.2.4 Đổi hướng cực trị
(EDC)
Độ lớn đổi hướng cực trị, θe,
phải được tính toán khi sử dụng quan hệ sau:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
trong đó:
σ1 được cho bởi công thức
(11) đối với mô hình NTM;
θe được giới hạn trong khoảng
± 180o;
Λ1 tham số tỷ lệ luồng
xoáy, theo công thức (5); và
D đường kính rôto.
Đổi hướng quá độ cực trị, θ(t),
được cho bởi
(21)
trong đó T = 6 (s) là khoảng thời gian
đổi hướng cực trị. Dấu phải được lựa chọn để có tải quá độ trường hợp xấu
nhất. Khi kết thúc đổi hướng quá độ, hướng được giả định là giữ không đổi. Tốc
độ gió phải theo mô hình biên dạng gió bình thường trong 6.3.1.2.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hình 3 - Ví
dụ biên độ đổi hướng cực
trị
Hình 4 - Ví
dụ đổi hướng cực trị
6.3.2.5 Gió giật kết
hợp cực trị có đổi hướng (ECD)
Gió giật kết hợp cực trị có đổi hướng
phải có độ lớn là
Vcg = 15 m/s
(22)
Tốc độ gió phải được xác định theo
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(23)
trong đó T = 10 s là thời gian tăng
và tốc độ gió V(z) được đưa ra bởi mô hình biên dạng gió thông thường trong 6.3.1.2.
Gia tăng tốc độ gió trong gió giật kết hợp cực trị được minh họa trong Hình 5 đối
với Vhub = 25 m/s.
Hình 5 - Ví dụ
biên độ gió giật kết hợp cực trị đối với ECD
Gia tăng tốc độ gió phải được giả thiết
là xuất hiện đồng thời với đổi hướng θ từ 0o lên tới và bằng
θcg, trong đó độ lớn θcg được xác định
theo
(24)
Sau đó, đổi hướng đồng thời được tính
bằng
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
trong đó T = 10 s là thời
gian tăng.
Độ lớn đổi hướng θcg và
thay đổi hướng θ(t) được biểu diễn trong Hình 6 và Hình 7, là hàm của Vhub
và hàm của thời gian đối với giá trị Vhub = 25 m/s tương ứng.
Hình 6 - Đổi
hướng đối với ECD
Hình 7 - Ví
dụ về đổi hướng quá độ
6.3.2.6 Trượt gió cực trị (EWS)
Trượt gió cực trị phải được tính bằng cách sử dụng
tốc độ gió quá độ như sau.
Trượt thẳng đứng quá độ (chiều
âm và chiều dương):
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(26)
Trượt ngang quá độ:
(27)
trong đó đối với cả trượt
gió thẳng đứng và trượt gió ngang:
α = 0,2; β = 6,4; T = 12 s;
σ1 được đưa ra theo công
thức (11) cho mô hình NTM;
Λ1 tham số tỷ lệ luồng xoáy,
theo công thức (5); và
D đường kính rôto.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Không áp dụng đồng thời cả hai trường
hợp trượt gió cực trị.
Hình 8 - Ví
dụ về trượt gió cực trị thẳng đứng chiều dương và chiều âm, biên dạng
gió trước khi bắt đầu (t = 0, đường nét đứt đều) và tại trượt gió tối đa (t = 6 s, đường
nét liền)
Hình 9 - Ví dụ các tốc độ gió tại
điểm cao nhất và điểm thấp nhất
của roto minh họa cho trượt gió dương tức thời
Ví dụ, trượt gió thẳng đứng cực trị (luồng xoáy
cấp A, zhub = 30 m, Vhub = 25 m/s, D = 42 m) được minh họa trong Hình
8, trong đó biểu diễn các biên dạng gió trước khi bắt đầu sự kiện cực trị (t =
0 s) và tại trượt gió tối đa (t = 6 s). Hình 9 biểu diễn các tốc độ gió ở điểm
cao nhất và điểm thấp nhất của rôto, để minh họa cho thời điểm phát triển trượt
gió (giả định như trong Hình 8).
6.4 Các điều
kiện môi trường khác
Các điều kiện môi trường (khí hậu)
không phải điều kiện về gió có thể ảnh hưởng đến tính toàn vẹn và an toàn của
tuabin gió, do hoạt động nhiệt, quang hóa, ăn mòn, cơ khí, điện hoặc vật lý
khác. Hơn nữa, sự kết hợp các điều kiện khí hậu có thể làm tăng tác động của chúng.
Tối thiểu phải tính đến các điều kiện
môi trường khác dưới đây và tác động của chúng phải được nêu trong tài liệu thiết
kế:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- độ ẩm;
- khối lượng riêng của không khí;
- bức xạ mặt trời;
- mưa, mưa đá, tuyết và băng;
- các hoạt chất hóa học;
- các hoạt chất cơ học;
- độ mặn;
- sét;
- các địa chấn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các điều kiện khí hậu được tính đến phải
được xác định theo hoặc các giá trị đại diện hoặc các giới hạn của các điều kiện
biến động. Xác suất xảy ra đồng thời các điều kiện khí hậu phải được tính đến
khi lựa chọn các giá trị thiết kế.
Các biến động điều kiện khí hậu trong
giới hạn bình thường tương ứng với tần suất xuất hiện là 1 năm không cản trở hoạt động bình
thường theo thiết kế của tuabin gió.
Trừ khi tồn tại mối tương quan, các điều
kiện môi trường cực trị khác theo 6.4.2 phải được kết hợp với điều kiện gió bình
thường theo 6.3.1.
6.4.1 Các điều kiện
môi trường bình thường khác
Các giá trị điều kiện môi trường bình
thường khác được tính đến là
- dải nhiệt độ môi trường từ -10 oC
đến +40 oC;
- độ ẩm tương đối đến 95 %;
- thành phần khí quyển tương đương với
khí quyển lục địa không ô nhiễm (xem TCVN 7921-2-1 (IEC 60721-2-1)):
- cường độ bức xạ mặt trời 1 000 W/m2;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Khi các điều kiện bên ngoài bổ sung được
nhà thiết kế quy định, các tham số và các giá trị của chúng phải được nêu trong
tài liệu thiết kế và phải phù hợp với các yêu cầu của TCVN 7921-2-1 (IEC
60721-2-1).
6.4.2 Các điều kiện
môi trường cực trị khác
Các điều kiện môi trường cực trị khác
phải được xem xét khi thiết kế tuabin gió là nhiệt độ, sét, băng và các địa chấn
(xem 11.6 để đánh giá các điều kiện địa chấn).
6.4.2.1 Nhiệt độ
Dải nhiệt độ cực trị đối với các cấp
tuabin gió tiêu chuẩn phải tối thiểu là -20 oC đến +50 oC.
6.4.2.2 Sét
Các quy định về bảo vệ chống sét yêu cầu
trong 10.6, có thể được xem là thích hợp cho các thiết kế tuabin đối với các cấp tuabin
gió tiêu chuẩn.
6.4.2.3 Băng
Không có các yêu cầu tối thiểu về băng
được đưa ra đối với các cấp tuabin gió tiêu chuẩn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Không có các yêu cầu về địa
chấn tối thiểu đối với các cấp tuabin gió tiêu chuẩn. Để xem xét các điều kiện
và các ảnh hưởng địa chấn,
xem 11.6 và Phụ lục C.
6.5 Điều kiện
điện lưới
Các điều kiện bình thường tại đầu nối
điện của tuabin gió được liệt kê dưới đây.
Áp dụng các điều kiện điện lưới thông
thường khi các tham số sau nằm trong phạm vi được nêu dưới đây.
- Điện áp - giá trị danh nghĩa (theo
IEC 60038) ± 10 %.
- Tần số - giá trị danh nghĩa ± 2 %.
- Mất cân bằng điện áp - tỷ lệ
thành phần điện áp thứ tự ngược không vượt quá 2 %.
- Các chu kỳ tự động đóng lại - thời
gian của chu kỳ tự động đóng lại là 0,1 s đến 5 s đối với lần đóng đầu tiên và
10 s đến 90 s đối với lần đóng lạl thứ hai phải được xem xét.
Mất điện - mất điện lưới phải được giả
thuyết là xảy ra 20 lần mỗi năm. Một
lần mất điện đến 6 h7 phải được coi là điều kiện bình
thường. Một lần mất điện tới 1 tuần phải được coi là một điều kiện cực đoan.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.1 Quy định
chung
Tính toàn vẹn của các thành phần mang
tải của kết cấu tuabin gió phải được kiểm tra và phải khẳng định được mức an
toàn chấp nhận được.
Độ bền mỏi và độ bền tới hạn của các thành phần kết cấu phải được kiểm tra xác
nhận bằng các tính toán và/hoặc các thử nghiệm để chứng minh tính toàn vẹn kết
cấu của tuabin gió với mức an toàn thích hợp.
Các phân tích kết cấu phải dựa trên
tiêu chuẩn ISO 2394.
Thực hiện các tính toán bằng cách sử dụng
các phương pháp thích hợp. Mô tả về các phương pháp tính toán phải được nêu
trong tài liệu thiết kế. Các mô tả phải có bằng chứng về tính hợp lệ của các phương
pháp tính toán hoặc tham khảo các nghiên cứu kiểm tra xác nhận thích hợp. Mức tải trong thử
nghiệm bất kỳ để kiểm chuẩn độ bền phải tương ứng với các hệ số an toàn thích hợp
đối với các tải đặc trưng theo 7.6.
7.2 Phương
pháp thiết kế
Phải kiểm tra xác nhận rằng các trạng
thái giới hạn không bị vượt quá đối
với thiết kế tuabin gió. Thử nghiệm mô hình và thử nghiệm mẫu cũng có thể được
sử dụng thay cho việc tính toán để kiểm tra xác nhận thiết kế kết cấu, như quy
định trong ISO 2394.
7.3 Tải
Tải mô tả trong các điều từ
7.3.1 đến 7.3.4 phải được xem xét đối với các tính toán thiết kế.
7.3.1 Tải trọng
trường và quán tính
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.3.2 Tải khí động
học
Tải khí động học là các tải tĩnh và động
gây ra bởi luồng không khí và tương tác của nó với các bộ phận tĩnh tại và chuyển
động của các tuabin gió.
Luồng không khí phụ thuộc vào tốc độ
gió trung bình và luồng xoáy ngang qua mặt phẳng rôto, tốc độ quay
của rôto, khối lượng riêng của không khí, các dạng khí động học của các thành phần
tuabin gió và các hiệu ứng tương tác của chúng, bao gồm cả các hiệu ứng đàn hồi
không khí.
7.3.3 Tải truyền động
Tải truyền động sinh ra do vận hành và
điều khiển các tuabin gió. Chúng ở nhiều dạng khác nhau gồm cả điều khiển mômen
xoắn của máy phát/biến tần, các tải truyền động ngang và xoay cánh tuabin và tải hãm cơ khí. Trong mỗi
trường hợp, điều quan trọng trong tính toán đáp ứng và tải là xem xét phạm
vi của các lực truyền động hiện có. Đặc biệt, đối với các hãm cơ khí, giới hạn
ma sát, lực đàn hồi hoặc áp lực khi bị ảnh hưởng bởi nhiệt độ và quá trình lão
hóa phải được tính đến trong việc kiểm tra đáp ứng và mang tải trong trường hợp
hãm bất kỳ.
7.3.4 Các tải khác
Các tải khác như tải do luồng rẽ khí,
các tải va đập, các tải do đóng băng, v.v... có thể xuất hiện và phải được tính đến
khi thích hợp, xem 11.4.
7.4 Các tình
huống thiết kế và các trường hợp tải
Điều này mô tả các trường hợp tải thiết kế
cho một tuabin gió và quy định một số lượng tối thiểu cần xem xét.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các trường hợp tải phải được xác định
từ việc kết hợp các mô hình vận
hành hoặc các tình huống thiết kế khác, ví dụ như các điều kiện
lắp ráp, lắp đặt hoặc bảo trì cụ thể, với các điều kiện bên ngoài. Phải xem xét tất cả các
trường hợp tải liên quan có xác suất xuất hiện chấp nhận được, cùng với đáp ứng
của hệ thống điều khiển và bảo vệ. Các trường hợp tải thiết kế được sử dụng để
kiểm tra xác nhận tính toàn vẹn về kết cấu của tuabin gió phải được tính toán bằng
cách kết hợp:
- các tình huống thiết kế bình thường
và điều kiện bên ngoài bình thường hoặc cực trị thích hợp;
- các tình huống thiết kế sự cố và các
điều kiện bên ngoài thích hợp;
- các tình huống thiết kế vận chuyển,
lắp đặt và bảo trì và các điều
kiện bên ngoài thích hợp.
Nếu có tương quan giữa điều kiện bên ngoài cực
trị và tình huống sự cố, việc kết hợp thực tế của cả hai phải được xem xét như
một trường hợp tải thiết kế.
Trong mỗi tình huống thiết kế, phải
xem xét một vài trường hợp tải thiết kế. Tối thiểu phải xem xét các trường hợp tải
thiết kế trong Bảng 2. Trong bảng này, các trường hợp tải thiết kế được quy định
đối
với
mỗi tình huống thiết kế bằng cách mô tả gió, điện và các điều kiện bên ngoài
khác.
Trong trường hợp tải thiết kế với một
mô hình gió xác định, nếu bộ điều khiển tuabin gió có thể làm cho tuabin gió bị
dừng trước khi đạt đến góc xoay tuabin và/hoặc tốc độ gió tối đa, thì phải chỉ ra
rằng tuabin có thể dừng một cách tin cậy trong điều kiện luồng xoáy có sự thay
đổi như nhau về điều kiện gió xác định.
Phải xem xét các trường hợp tải thiết
kế khác nếu có liên quan đến tính toàn vẹn kết cấu của thiết kế tuabin gió cụ
thể.
Đối với mỗi trường hợp tải thiết kế,
loại phân tích thích hợp được công bố là "F" và "U" trong Bảng
2. Loại "F" đề cập đến phân tích các tải mỏi, được sử dụng
trong việc đánh giá độ bền mỏi. Loại "U" đề cập đến phân tích các tải giới hạn,
liên quan đến sức bền vật liệu, độ uốn đầu cánh và ổn định của kết
cấu.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Bảng 2 - Các
trường hợp tải thiết kế
Tình huống
thiết kế
DLC
Điều kiện
gió
Các điều kiện khác
Loại phân tích
Hệ số an toàn từng
phần
1) Phát điện
1.1
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Vin < Vhub < Vout
Để ngoại suy các sự kiện cực trị
U
N
1.2
NTM
Vin < Vhub < Vout
F
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
1.3
ETM
Vin < Vhub < Vout
U
N
1.4
ECD
Vhub = Vr
- 2 m/s,
Vr, Vr + 2m/s
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
U
N
1.5
EWS
Vin < Vhub < Vout
U
N
2) Phát điện có xuất hiện
sự cố
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
NTM
Vin < Vhub < Vout
Sự cố hệ thống điều khiển hoặc mất
điện lưới
U
N
2.2
NTM
Vin < Vhub < Vout
Sự cố hệ thống bảo vệ hoặc sự cố điện
bên trong trước đó
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
A
2.3
EOG
Vhub = Vr ± 2 m/s và Vout
Sự cố điện bên ngoài hoặc bên trong
kể cả mất điện
lưới
U
A
2.4
NTM
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Sự cố hệ thống điều khiển, hệ
thống bảo vệ
hoặc hệ thống điện kể cả mất điện
lưới
F
*
3) Khởi động
3.1
NWP
Vin < Vhub < Vout
F
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3.2
EOG
Vhub = Vin, Vr ± 2 m/s và Vout
U
N
3.3
EDC
Vhub = Vin, Vr
± 2 m/s và
Vout
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
U
N
4) Dừng bình thường
4.1
NWP
Vin < Vhub < Vout
F
*
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
EOG
Vhub = Vr ± 2 m/s và Vout
U
N
5) Dừng khẩn cấp
5.1
NTM
Vhub = Vr ± 2 m/s và Vout
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
U
N
6) Nghỉ (đứng yên hoặc chạy
không tải)
6.1
EWM
tần suất xuất hiện 50năm
U
N
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
EWM
tần suất xuất hiện 50năm
Mất kết nối điện lưới
U
A
6.3
EWM
tần suất xuất hiện 1 năm
Độ lệch xoay tuabin cực trị
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
N
6.4
NTM
Vhub < 0,7 Vref
F
*
7) Điều kiện nghỉ và sự cố
7.1
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tần suất xuất hiện 1 năm
U
A
8)Vận chuyển, lắp ráp, bảo trì và sửa chữa
8.1
NTM
Vmaint do nhà chế tạo công bố
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
T
8.2
EWM
tần suất xuất hiện 1 năm
U
A
Các từ viết tắt sau đây được sử dụng
trong Bảng 2:
DLC Trường hợp tải thiết kế
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
EDC Đổi hướng cực trị (xem 6.3.2.4)
EOG Gió giật hoạt động cực trị (xem
6.3.2.2)
EWM Mô hình tốc độ gió cực trị (xem
6.3.2.1)
EWS Trượt gió cực trị (xem 6.3.2.6)
NTM Mô hình luồng xoáy bình thường
(xem 6.3.1.3)
ETM Mô hình luồng xoáy cực trị (xem
6.3.2.3)
NWP Mô hình biên dạng gió bình thường
(xem 6.3.1.2)
Vr±2 m/s Độ
nhạy với tất cả các tốc độ gió trong phạm vi phân tích
F Độ mỏi (xem 7.6.3)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
N Bình thường
A Bất thường
T Vận chuyển và lắp đặt
* An toàn độ mỏi từng phần (xem 7.6.3)
Khi một phạm vi tốc độ gió được chỉ ra trong Bảng
2, phải xem xét tốc độ gió dẫn đến điều kiện bất lợi nhất cho thiết kế tuabin
gió. Phạm vi tốc độ gió có thể được thể hiện bởi tập hợp các giá trị rời rạc,
trong trường hợp đó độ phân giải phải đủ để đảm bảo độ chính xác của các tính
toán8.
Liên quan đến định nghĩa các trường hợp tải thiết kế, tham khảo các điều kiện
gió mô tả trong Điều 6.
7.4.1 Phát điện
(DLC 1.1 -
1.5)
Trong tình huống thiết kế này, tuabin gió
đang chạy và được nối với phụ tải điện. Cấu hình tuabin gió giả định phải
tính đến sự mất cân bằng rôto. Khối lượng tối đa và sự mất cân bằng khí động học
(ví dụ
như
độ xoay của cánh và độ lệch xoắn) quy định trong chế tạo rôto phải được sử dụng
trong các tính toán thiết kế.
Ngoài ra, các độ lệch với các tình huống
vận hành tối ưu về lý thuyết như độ xoay tuabin và các lỗi theo dõi hệ thống điều
khiển phải được tính đến trong
phân tích các tải vận hành.
Các trường hợp tải thiết kế (DLC) 1.1
và 1.2 đưa ra các yêu cầu đối với các tải do luồng xoáy khí quyển gây ra trong quá
trình vận hành bình thường của tuabin gió trong suốt tuổi thọ (NTM). DLC 1.3
đưa ra các yêu cầu đối với tải tới hạn do các điều kiện luồng xoáy cực trị gây
ra. DLC 1.4 và 1.5 quy định
các trường hợp tức thời được chọn là các sự kiện tới hạn tiềm ẩn trong tuổi thọ
của tuabin gió.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nếu các giá trị thiết kế cực trị của
các tham số này không vượt quá các giá trị thiết kế cực trị được rút ra đối với
DLC 1.3, hệ số c trong công thức (19) đối với mô hình luồng xoáy cực trị sử dụng
trong DLC
1.3
có thể tăng lên cho đến khi các giá trị thiết kế cực trị tính được trong DLC
1.3 bằng hoặc vượt quá các giá trị thiết kế cực trị của các tham số tính được
trong DLC 1.1.
7.4.2 Phát điện có
xuất hiện sự cố hoặc mất kết nối điện lưới
(DLC 2.1 - 2.4)
Tình huống thiết kế này liên quan đến
sự kiện quá độ được kích hoạt bởi sự cố hoặc mất kết nối điện lưới trong khi
tuabin đang phát điện. Bất kỳ sự cố nào trong hệ thống điều khiển và bảo vệ, hoặc
sự cố bên trong hệ thống điện, đáng kể đối với tải tuabin gió (ví dụ như ngắn mạch của
máy phát) đều phải được xem xét. Đối với DLC 2.1, sự xuất hiện sự cố liên quan
đến các chức năng điều khiển hoặc mất kết nối điện lưới được coi là sự kiện bình thường. Đối với
DLC 2.2, các sự kiện hiếm, kể cả sự cố liên quan đến các chức năng bảo vệ hoặc
các hệ thống điện bên trong phải được coi là bất thường. Đối với DLC 2.3, sự kiện
gió lớn tiềm ẩn, EOG, kết hợp
với sự cố hệ thống điện bên trong hoặc bên ngoài (kể cả việc mất kết nối điện
lưới) đều được coi là một sự kiện bất thường. Trong trường hợp này, thời gian của hai
sự kiện này phải được chọn để có được
trường hợp tải xấu nhất. Nếu sự cố hoặc mất kết nối điện lưới không làm dừng tức
thời và việc mang tải tiếp theo
có thể dẫn đến hỏng hóc do mỏi đáng kể, thì khoảng thời gian duy trì tình trạng
này cùng với hỏng hóc do mỏi gây ra trong điều kiện luồng xoáy bình thường
(NTM) phải được đánh giá trong DLC 2.4.
Để thay cho các quy định kỹ thuật của
DLC 2.3 nêu trên và trong Bảng 2, DLC 2.3 thay vì được coi là sự kiện
bình thường (tức là hệ số an toàn từng phần của tải là 1,35) thì phải được phân
tích bằng cách sử dụng
các mô phỏng gió ngẫu nhiên (NTM - Vin < Vhub < Vout) kết hợp với
sự cố hệ thống điện bên trong hoặc bên ngoài (kể cả mất kết nối điện lưới).
Trong trường hợp này, phải thực hiện 12 mô phỏng đáp ứng đối với mỗi tốc độ gió
trung bình được xét. Đối với mỗi mô phỏng đáp ứng, lấy mẫu đáp ứng cực trị sau
khi xảy ra sự cố điện.
Sự cố phải được đưa vào sau khi ảnh hưởng của các điều kiện ban đầu đã trở nên không
đáng kể. Đối với mỗi tốc độ gió trung bình, đáp ứng cực trị danh nghĩa được
đánh giá là trung bình của 12 đáp ứng cực trị được lấy mẫu cộng với
ba lần độ lệch chuẩn của 12 mẫu. Giá trị đáp ứng đặc trưng đối với DLC 2.3 được
xác định là giá trị cực trị trong các đáp ứng cực trị danh nghĩa.
7.4.3 Khởi động
(DLC 3.1 - 3.3)
Tình huống thiết kế này bao gồm tất cả các sự kiện
dẫn đến các tải trên tuabin gió trong các quá trình quá độ chuyển từ trạng thái
đứng yên hoặc không tải sang phát điện. Số lần xuất hiện được ước lượng
dựa trên đáp ứng của hệ thống điều khiển.
7.4.4 Dừng bình thường
(DLC 4.1 - 4.2)
Tình huống thiết kế này bao gồm tất cả
các sự kiện dẫn đến các tải trên tuabin gió trong các quá trình quá độ chuyển từ
trạng thái phát điện sang trạng thái đứng yên hoặc không tải. Số lần xuất hiện
được ước lượng dựa trên đáp ứng của hệ thống điều khiển.
7.4.5 Dừng khẩn cấp
(DLC 5.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.4.6 Nghỉ (đứng
yên hoặc không tải) (DLC 6.1 - 6.4)
Trong tình huống thiết kế này, rôto của
tuabin gió nghỉ đang ở tình trạng đứng yên hoặc chạy không tải. Trong DLC 6.1,
6.2 và 6.3 tình huống này phải được xem xét với mô hình tốc độ gió cực trị
(EWM). Đối với DLC 6.4, phải xem xét mô hình luồng xoáy bình thường (NTM).
Đối với trường hợp tải thiết kế,
khi các điều kiện gió được xác định bởi EWM, có thể sử dụng mô
hình gió cực trị ổn định hoặc
mô hình gió cực trị luồng xoáy. Nếu sử dụng mô hình gió cực trị luồng xoáy, thì
đáp ứng phải được ước tính khi sử dụng mô phỏng động đầy đủ hoặc phân tích gần ổn định với
các điều chỉnh thích hợp đối với gió giật và đáp ứng động bằng cách sử dụng
công thức trong ISO 4354.
Nếu sử dụng mô hình gió cực trị ổn định,
thì những ảnh hưởng
của đáp ứng cộng hưởng phải được ước tính từ
phân tích gần ổn định nêu trên. Nếu tỷ số giữa cộng hưởng và đáp ứng
cơ bản (R/B) nhỏ hơn 5%, thì có thể áp dụng phân tích tĩnh sử dụng mô hình gió
cực trị ổn định. Nếu độ trượt trong hệ thống xoay tuabin tuabin gió có thể xảy
ra ở tải đặc trưng,
thì độ trượt bất
lợi lớn nhất có thể có phải được thêm vào độ xoay tuabin trung bình. Nếu tuabin
gió có hệ thống xoay tuabin mà dịch chuyển xoay tuabin dự kiến xảy ra trong các
tình huống gió cực trị (như xoay tuabin tự do, xoay tuabin thụ động hoặc xoay
tuabin bán tự do), phải sử dụng mô hình gió luồng xoáy,độ xoay tuabin sẽ bị chi phối bởi các
thay đổi hướng gió luồng xoáy và đáp ứng động xoay tuabin của tuabin. Ngoài ra,
nếu tuabin gió chịu các dịch chuyển xoay tuabin lớn hoặc thay đổi trạng thái
thăng bằng trong quá trình tăng tốc độ gió từ vận hành bình thường tới tình trạng
cực trị, đáp ứng này phải được đưa vào phân tích.
Trong DLC 6.1, với tuabin gió có hệ thống
xoay tuabin chủ động, độ xoay tuabin lên đến ± 15o sử dụng mô hình
gió cực trị ổn định hoặc với độ xoay tuabin trung bình ± 8o sử dụng
mô hình gió cực trị luồng xoáy là bắt buộc, với điều kiện là có thể đảm bảo khống
chế chống trượt trong hệ thống xoay tuabin.
Trong DLC 6.2, phải giả định xảy ra mất điện lưới
ở giai đoạn đầu trong cơn bão có tình huống gió cực trị. Trừ khi có dự
phòng cấp điện cho hệ thống điều khiển và xoay tuabin với khả năng chống xoay
tuabin trong khoảng thời gian ít nhất là 6 h, phải phân tích ảnh hưởng của việc thay đổi
hướng gió lên đến ± 180o.
Trong DLC 6.3, gió cực trị có tần suất
xuất hiện là 1 năm phải được kết hợp với độ xoay tuabin cực trị. Phải giả định
độ xoay tuabin cực trị lên đến ± 30o sử dụng mô hình gió cực trị ổn
định hoặc độ xoay tuabin trung bình ± 20o sử dụng mô hình gió luồng
xoáy.
Trong DLC 6.4, phải xem xét số
giờ dự kiến của thời gian không phát điện ở tải dao động thích hợp với mỗi tốc
độ gió mà hỏng hóc do mỏi
đáng kể có thể xảy ra với thành phần bất kỳ (ví dụ từ trọng lượng của
các cánh không tải).
7.4.7 Nghỉ cộng
thêm các điều kiện sự cố (DLC 7.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong trường hợp có sự cố trong hệ thống
xoay tuabin, phải xem xét độ xoay tuabin ± 180o. Đối với sự cố bất kỳ,
độ xoay tuabin phải phù hợp với DLC 6.1.
Nếu độ trượt trong hệ thống xoay
tuabin có thể xảy ra ở tải đặc trưng cho trong DLC 7.1, phải xét đến độ trượt bất lợi lớn
nhất có thể có.
7.4.8 Vận chuyển,
lắp ráp, bảo trì và sửa chữa (DLC 8.1 - 8.2)
Đối với DLC 8.1, nhà chế tạo phải quy
định tất cả các điều kiện
gió và các tình huống thiết kế được giả định cho việc vận chuyển, lắp ráp vào vị trí làm
việc, bảo trì và sửa chữa tuabin gió. Các điều kiện gió tối đa quy định phải được
xem xét trong thiết kế nếu chúng có thể sinh ra tải đáng kể trên tuabin. Nhà chế
tạo phải cho phép giới hạn đủ lớn giữa các điều kiện quy định và điều kiện gió
được xem xét trong thiết kế để cung cấp mức an toàn chấp nhận được. Giới hạn đủ
lớn này có thể đạt được bằng
cách thêm 5 m/s vào điều kiện gió công bố.
Ngoài ra, DLC 8.2 phải bao gồm tất cả
trạng thái tuabin trong khi vận chuyển, lắp ráp, bảo trì và sửa chữa mà
có thể kéo dài lâu
hơn một tuần. Khi có liên quan, điều này phải gồm cả cột tháp chưa được hoàn
thiện hoàn toàn, cột tháp đứng mà chưa có vỏ bọc động cơ và tuabin không có một
hoặc nhiều cánh. Có thể giả định rằng tất cả các cánh được lắp đồng thời. Phải
giả định rằng không được nối vào điện lưới ở bất kỳ trạng thái nào trong các trạng
thái này. Có thể thực hiện các biện pháp để giảm tải trong trạng thái bất kỳ với
điều kiện các biện pháp này không yêu cầu kết nối điện lưới.
Các dụng cụ dùng để khóa phải có khả
năng chịu được các tải phát sinh từ những tình huống liên quan trong DLC 8.1. Đặc
biệt, phải tính đến việc đặt các lực truyền động thiết kế tối đa.
7.5 Tính toán
tải
Phải tính đến các tải như mô tả trong
7.3.1 đến 7.3.4 trong từng trường hợp tải thiết kế. Khi có
liên
quan,
cũng phải tính đến các yếu
tố sau:
- nhiễu loạn trường gió do chính các
tuabin gió gây ra (vận tốc do rẽ khí gây ra, độ che của cột tháp, v.v...);
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- hiệu ứng khí động học
không ổn định;
- động lực học kết cấu và ghép phối
các chế độ rung;
- hiệu ứng khí đàn hồi;
- đáp ứng của hệ thống bảo vệ và điều
khiển tuabin gió.
Các mô phỏng động sử dụng một mô hình
kết cấu động thường được sử dụng để tính các tải tuabin gió. Các trường hợp tải
nhất định có đầu
vào gió luồng xoáy. Đối với những trường hợp này, tổng thời gian dữ liệu tải phải
đủ dài để đảm bảo độ tin cậy thống kê của ước lượng tải đặc trưng. Tối thiểu phải
thực hiện sáu lần ngẫu nhiên 10 min (hoặc một giai đoạn 60 min liên tục) đối với
mỗi tốc độ gió trung bình tại chiều cao của hub sử dụng trong các mô phỏng. Tuy
nhiên, đối với DLC 2.1, 2.2 và 5.1, phải thực hiện ít nhất 12 mô
phỏng cho mỗi sự
kiện tại tốc độ gió cho trước. Vì các điều kiện ban đầu sử dụng cho các mô phỏng động lực học
thường có ảnh hưởng đến thống kê tải trong thời gian đầu của mô phỏng, nên dữ liệu
của 5 s đầu tiên (hoặc lâu hơn nếu cần thiết) sẽ không được xem xét trong khoảng thời
gian phân tích bất kỳ liên quan đến đầu vào gió luồng xoáy.
Khi gió luồng xoáy được sử dụng cho
các mô phỏng động lực học, phải lưu ý đến độ phân giải của lưới liên quan đến độ
phân giải về không gian9 và thời gian.
Trong nhiều trường hợp, các biến dạng
hoặc các ứng suất cục bộ đối với các vị trí trọng yếu trong thành phần tuabin gió cho
trước đồng thời bị chi phối bởi tải theo nhiều trục. Trong trường hợp này, chuỗi
thời gian của tải trực giao là đầu ra của các mô phỏng đôi khi được
dùng để xác định các tải thiết kế.
Khi các chuỗi thời gian thành phần trực
giao như vậy được sử dụng để tính tải mỏi và tải giới hạn, chúng phải được kết hợp để duy trì cả về pha và
độ lớn. Do đó, phương pháp trực tiếp là dựa trên đạo hàm của ứng
suất đáng kể theo thời gian. Khi đó, các phương pháp dự báo cực
trị và mỏi có thể được áp dụng cho tín hiệu duy nhất này, tránh các vấn đề về kết
hợp tải.
Các thành phần tải giới hạn cũng có thể được kết
hợp theo cách bảo toàn với giả thiết các giá trị thành phần cực trị xảy ra đồng thời.
Trong trường hợp sử dụng tùy chọn này, cả hai giá trị thành phần cực trị lớn nhất và nhỏ nhất phải được
áp dụng trong tất cả các kết hợp có thể có để tránh dẫn đến tình trạng không bảo toàn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.6 Phân
tích trạng thái tới hạn biên
7.6.1 Phương pháp
Các hệ số an toàn từng phần phản ánh độ
không đảm bảo và tính dễ thay đổi về tải và vật liệu, độ không đảm bảo của phương
pháp phân tích và tầm quan trọng của các thành phần kết cấu liên quan đến
các hậu quả của sự cố.
7.6.1.1 Hệ số an toàn
từng phần đối với tải
và vật liệu
Để đảm bảo an toàn, các giá trị thiết
kế đối với độ không đảm bảo và tính dễ thay đổi về tải và vật liệu phải được tính đến bởi
các hệ số an toàn từng phần được xác định trong các công thức (28) và (29).
Fd = γf
Fk
(28)
trong đó:
Fd là giá trị
thiết kế đối với các tập hợp tải bên trong hoặc đáp ứng tải với nhiều thành phần
tải đồng thời từ các nguồn khác nhau trong trường hợp tải thiết kế cho trước;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Fk là giá trị đặc
trưng của tải.
(29)
trong đó:
fd là giá trị
thiết kế của vật
liệu;
γm là hệ số an toàn từng
phần của vật liệu,
fk giá trị
đặc trưng của các thuộc tính vật liệu.
Các hệ số an toàn từng phần của tải sử
dụng trong tiêu chuẩn này có tính đến
- độ lệch/độ không đảm bảo bất lợi nhất
có thể có của tải so với giá
trị đặc trưng;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các hệ số an toàn riêng phần của vật
liệu sử dụng trong tiêu chuẩn này, như trong ISO 2394, có tính đến
- độ lệch/độ không đảm bảo bất lợi nhất
có thể có của độ bền vật liệu so với giá trị đặc trưng;
- đánh giá không chính xác có thể có của
khả năng chịu đựng của các phần hoặc khả năng mang tải của các bộ
phận của kết cấu;
- độ không đảm bảo trong các tham số hình
học;
- độ không đảm bảo trong mối tương
quan giữa các thuộc tính vật liệu trong kết cấu và các thuộc tính vật liệu đo
được bằng các thử nghiệm trên các mẫu thử;
- độ không đảm bảo trong các hệ số
chuyển đổi.
Độ không đảm bảo khác nhau này đôi khi
được tính đến bởi các hệ số an toàn từng phần riêng rẽ, nhưng trong tiêu chuẩn
này cũng như trong hầu hết tiêu chuẩn khác, các hệ số liên quan đến tải được kết
hợp thành một hệ số γf và các hệ số
liên quan đến vật liệu thành một hệ số γm.
7.6.1.2 Hệ số an toàn từng
phần đối với hậu
quả sự cố và các phân loại thành
phần
Hệ số hậu quả sự cố, γn, được đưa ra
để phân biệt giữa:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- Thành phần loại 2: được sử dụng cho
các thành phần kết cấu “ hỏng-không an toàn” mà các sự cố có thể dẫn đến
sự cố một bộ phận chính của tuabin
gió.
- Thành phần loại 3: được sử dụng cho
các thành phần cơ khí “hỏng-không an toàn” mà liên kết cơ cấu truyền động và
phanh với các thành phần kết cấu chính nhằm mục đích thực hiện các chức năng bảo
vệ tuabin gió không có dự phòng mô tả trong 8.3.
Hệ số hậu quả sự cố phải có trong tải
thử nghiệm khi thực hiện các thử nghiệm như, ví dụ, thử nghiệm cánh tỷ lệ thực.
Đối với phân tích trạng thái giới hạn
biên của tuabin gió, bốn loại phân tích sau phải được thực hiện khi có liên
quan:
- phân tích giới hạn độ bền (xem
7.6.2);
- phân tích sự cố do mỏi (xem
7.6.3);
- phân tích độ ổn định (độ uốn,
v.v...) (xem 7.6.4);
- phân tích độ lệch tới hạn (trở ngại cơ khí
giữa cánh và cột tháp, v.v...) (xem 7.6.5).
Mỗi loại phân tích yêu cầu công thức
khác nhau của hàm trạng thái giới hạn và xử lý các nguồn gây ra độ không đảm bảo
khác nhau trong suốt quá trình sử dụng các hệ số an toàn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Khi xác định tính toàn vẹn kết cấu của
các phần tử của tuabin
gió, có thể sử dụng các mã thiết kế quốc gia hoặc quốc tế cho các vật liệu liên
quan. Cần đặc biệt
lưu ý khi sử dụng các hệ số an toàn từng phần theo các mã thiết kế quốc
gia hoặc quốc tế cùng với các hệ số an toàn từng phần của tiêu chuẩn này. Phải
đảm bảo rằng mức an
toàn cuối cùng không ít hơn so với mức an toàn dự kiến trong tiêu chuẩn này.
Các mã khác nhau chia các hệ số an
toàn từng phần của vật liệu, γM, thành một vài hệ số vật liệu thể hiện
các loại độ không đảm bảo riêng rẽ,
ví dụ sự thay đổi
vốn có của độ bền vật liệu, quy mô kiểm soát sản xuất hay phương pháp sản xuất.
Các hệ số vật liệu được cho trong tiêu chuẩn này tương ứng với "các hệ số
an toàn từng phần chung của vật liệu" thể hiện sự thay đổi vốn có của các
tham số độ bền. Nếu các mã đưa ra các hệ số an toàn từng phần hoặc sử dụng các
hệ số giảm nhẹ trên các giá trị đặc trưng để thể hiện các độ không đảm bảo
khác, thì độ không đảm
bảo này cũng phải được tính đến.
Các mã riêng có thể chọn các phân tích khác nhau
của các hệ số an toàn từng phần trên các bộ phận tải và vật liệu
của việc kiểm tra xác nhận thiết kế. Việc chia các hệ số dự kiến ở đây được xác
định theo ISO 2394. Nếu việc chia các hệ số trong mã lựa chọn có sai lệch so với
ISO 2394, thì các điều chỉnh cần thiết trong
mã lựa chọn phải được tính đến khi kiểm
tra xác nhận theo tiêu chuẩn này.
7.6.2 Phân tích độ
bền tới hạn
Hàm trạng thái giới hạn có thể được
tách thành các hàm tải và hàm độ bền S và R sao cho điều kiện trở thành
γn.S(Fd) ≤ R(fd)
(30)
Độ bền R thường tương ứng với các giá
trị thiết kế tối đa cho phép của độ bền vật liệu, do đó R(fd) = fd, trong khi
hàm S để phân tích giới hạn bền thường được định nghĩa là giá trị cao nhất của
các đáp ứng kết cấu, do đó S(Fd) = Fd. Công thức sau
đó trở thành
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lưu ý rằng γn là kết quả của hệ số sự
cố mà không được coi là hệ số an toàn của vật liệu.
Đối với mỗi thành phần tuabin
gió được đánh giá và đối với mỗi trường hợp tải trong Bảng 2, khi việc phân tích độ bền giới
hạn là thích hợp, điều kiện trạng
thái giới hạn trong công thức (31) phải được kiểm tra so với trạng thái giới hạn
tới hạn nhất, được xác định
trên cơ sở có giới hạn biên tối thiểu.
Trong các trường hợp tải liên quan đến
dòng luồng xoáy khi cho trước một dải các tốc độ gió, xác suất vượt quá đối với
tải đặc trưng phải được tính toán có xét đến phân bố tốc độ gió cho trong
6.3.1.1. Do nhiều tính toán tải sẽ cần đến các mô phỏng ngẫu nhiên trong khoảng
thời gian giới hạn, tải đặc trưng xác định cho tần suất xuất hiện yêu cầu có thể
lớn hơn giá trị bất kỳ tính được trong mô phỏng. Hướng dẫn tính toán các tải đặc
trưng sử dụng dòng luồng xoáy được nêu trong Phụ lục F.
Đối với DLC 1.1, giá trị tải đặc trưng
được xác định bằng phép ngoại suy tải theo thống kê và tương ứng với xác suất
vượt quá ít hơn hoặc bằng 3,8 x 10-7, đối với giá
trị lớn nhất trong khoảng thời gian 10 min bất kỳ (tức là tần suất xuất hiện là
50 năm) cho các tình huống thiết kế bình thường.
Dữ liệu được sử dụng trong phương pháp
ngoại suy được lấy ra từ chuỗi thời gian của các mô phỏng tuabin trong
thời gian ít nhất 10 min
trên phạm vi vận hành của tuabin đối với DLC 1.1. Yêu cầu tối thiểu 15 mô phỏng
cho mỗi tốc độ gió từ (Vrated - 2 m/s) đến khi cắt và yêu cầu 6 mô
phỏng cho mỗi tốc độ gió thấp hơn (Vrated - 2 m/s). Khi lấy dữ liệu,
nhà thiết kế phải xem xét ảnh hưởng độc lập giữa các đỉnh trên phép ngoại suy
và giảm thiểu sự phụ thuộc khi có thể. Nhà thiết kế phải tổng hợp dữ liệu và các
phân bố xác suất để tạo thành một phân bố dài hạn nhất quán. Để đảm bảo ước lượng
ổn định các tải dài hạn, phải áp dụng tiêu chí hội tụ cho một phân vị xác suất
nhỏ hơn mô hình dữ liệu đối với các phân bố vượt quá ngắn hạn hoặc dài hạn. Để
được hướng dẫn, xem Phụ lục F.
Giá trị đặc trưng đối với các mômen
trong mặt phẳng và ngoài mặt
phẳng của cánh
và độ lệch đầu cánh có thể được xác định bằng một qui trình đơn giản10.
Sau đó, giá trị đặc trưng có thể được xác định bằng cách tính trung bình các cực
trị đối với mỗi bin 10 min và sử dụng giá trị lớn nhất, nhân với hệ số ngoại
suy 1,5, trong khi duy trì hệ số tải từng phần đối với phép ngoại suy tải theo
thống kê, xem Bảng 3.
Đối với các trường hợp tải có các sự
kiện trường gió xác định quy định, giá trị đặc trưng của tải phải là giá trị
quá độ tính được cho trường hợp xấu nhất. Khi sử dụng dòng luồng xoáy, phải lấy
giá trị trung bình trong số các tải tính được cho trường hợp xấu nhất đối với
các thực hiện ngẫu nhiên 10 min khác nhau, ngoại trừ đối với DLC 2.1, 2.2 và 5.1, khi đó
giá trị đặc trưng của tải phải là giá trị trung bình của một nửa các tải tối đa
lớn nhất.
7.6.2.1 Hệ số an toàn từng
phần cho các tải
Các hệ số an toàn từng phần cho các tải
tối thiểu phải là các giá trị quy định trong Bảng 3.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tải không
thuận lợi
Tải thuận lợi 11
Loại tình
huống thiết kế (xem Bảng 2)
Tất cả các
tình huống thiết kế
Bình thường
(N)
Bất thường
(A)
Vận chuyển
và lắp dựng (T)
1,35*
1,1
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
0,9
* Đối với trường hợp tải thiết kế
DLC 1.1, biết rằng các tải được xác định sử dụng ngoại suy tải theo thống kê ở
các tốc độ gió
quy định nằm giữa Vin và Vout, hệ số tải từng phần đối
với các tình huống thiết kế bình thường phải là γf = 1,25.
Nếu đối với các tình huống thiết kế
bình thường, giá trị đặc trưng của đáp ứng tải Fgravity do
lực hấp dẫn có thể được tính cho tình huống thiết kế đang xét, và lực hấp dẫn là tải không
thuận lợi, hệ số tải từng phần đối với tải kết hợp từ lực hấp dẫn và các nguồn
khác có thể có giá trị
Cách tiếp cận trong 7.6.1.1, ở đó hệ số
an toàn từng phần của các tải được áp dụng cho đáp ứng tải, giả thiết rằng việc
thể hiện thích hợp đáp ứng động học là mối quan tâm chính. Đối với các nền móng
hoặc khi việc thể hiện thích hợp đáp ứng vật liệu không tuyến tính hoặc sự
không tuyến tính về hình dạng hoặc cả hai đều là mối quan tâm chính thì đáp ứng tải
thiết kế Sd phải có được từ phân tích kết cấu đối với kết
hợp các tải thiết kế Fd, trong đó tải thiết kế có được bằng cách nhân
các tải đặc trưng Fk với hệ số tải từng phần quy định γf đối với các
tải thuận lợi và không thuận lợi,
Fd
= γfFk
Các đáp ứng tải trong cột tháp tại
giao diện (các lực trượt và momen uốn) được lấy hệ số với γf từ Bảng 3 phải
được áp dụng như các điều kiện
biên.
Đối với các nền móng chịu trọng lực,
các quy định giới hạn xem xét ổn định tổng thể (dịch chuyển thân cứng không
làm hỏng trong đất)
và khả năng chịu lực của đất và nền móng được chú ý và tính toán theo tiêu chuẩn
đã công nhận. Nói chung, hệ số an toàn từng phần γf = 1,1 đối với
các tải thường xuyên không thuận lợi và γf = 0,9 đối với các tải
thường xuyên thuận lợi được áp dụng cho các tải nền móng, lấp đất và đắp nổi. Nếu
có thể được chứng minh bằng quản lý chất lượng và giám sát chất lượng tương ứng
rằng mật độ vật liệu nền móng quy định trong tài liệu thiết kế được đáp ứng tại
chỗ thì hệ số an
toàn từng phần đối với tải nền móng thường xuyên γf = 1,0 có thể được sử
dụng cho các trạng thái giới hạn về khả năng chịu lực của đất và nền móng. Nếu
việc đắp nổi được tính bằng mực
nước địa hình, thì có thể áp dụng
hệ số an toàn từng phần cho việc đắp nổi là γf = 1,0.
Một cách khác, kiểm tra khả năng chịu
lực của đất và nền móng có thể dựa trên hệ số an toàn từng phần γf = 1,0 cho cả
tải thường xuyên thuận lợi và không thuận lợi và kiểm tra tính ổn định tổng
thể có thể dựa trên hệ số an toàn từng phần γf = 1,1 cho các tải
thường xuyên không thuận lợi và γf = 0,9 cho các tải
thường xuyên thuận lợi, sử dụng trong mọi trường hợp các ước lượng bảo toàn của khối
lượng hoặc mật độ xác định là các điểm phân vị 5 %/95 %. Điểm phân vị giới hạn dưới
được sử dụng khi tải là thuận lợi. Điểm phân vị giới hạn trên được sử dụng khi
tải là không thuận lợi.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.6.2.2 Hệ số an
toàn riêng phần đối với các vật
liệu không có sẵn mã thiết kế đã được công nhận
Các hệ số an toàn riêng phần của các vật
liệu phải được xác định liên quan đến sự đầy đủ của dữ liệu thử nghiệm của các
thuộc tính vật liệu sẵn có. Giá trị của hệ số an toàn từng phần tổng quát của
các vật liệu, γM, thể hiện sự
thay đổi vốn có của tham số độ bền phải là
γm ≥ 1,1
(32)
Khi áp dụng cho các thuộc tính vật liệu
đặc trưng có xác suất tồn tại 95 %, p, với giới hạn độ tin cậy 95 %12.
Giá trị này áp dụng cho các thành phần có hoạt tính động dễ uốn13 mà hỏng
chúng có thể dẫn đến hỏng bộ phận
chính của tuabin gió, ví dụ cột tháp hình ống được hàn, kết nối mặt bích cột tháp,
khung máy được hàn hoặc các kết nối cánh. Các kiểu hỏng hóc có thể
bao gồm:
- độ võng của các vật liệu dễ uốn;
- gãy bu lông trong kết nối bằng bu
lông có số lượng bu lông đủ lớn để cung cấp 1/γm độ bền sau sự
cố của một bu lông duy nhất.
Đối với các thành phần kết cấu/cơ khí
"hỏng không an
toàn" có đáp ứng không dễ uốn mà hỏng các thành phần này sẽ
nhanh chóng dẫn đến hỏng bộ phận chính của tuabin gió, hệ số an toàn chung của các vật liệu
phải không nhỏ hơn:
- 1,2 đối với độ uốn tổng thể của các
vỏ uốn cong ví dụ như các cột
tháp hình ống và các cánh, và
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Để rút ra các hệ số an toàn từng phần
tổng thể của vật liệu từ hệ số tổng thể này, cần phải tính đến các hiệu ứng tỷ lệ,
dung sai và suy giảm do các hoạt động bên ngoài, ví dụ như bức xạ tia cực tím
hoặc độ ẩm và các sai hỏng mà thường không được phát hiện.
Các hệ số an toàn từng phần đối với các
hậu quả sự cố:
Thành phần loại 1: γn = 0,9
Thành phần loại 2: γn = 1,0
Thành phần loại 3: γn = 1,3
7.6.2.3 Hệ số an
toàn riêng phần của các vật liệu có sẵn mã thiết kế đã được công nhận
Các hệ số an toàn riêng phần kết hợp đối
với các tải, vật liệu và hậu quả sự cố, γf, γm và γn, không được
nhỏ hơn giá trị
quy định trong 7.6.2.1 và 7.6.2.2.
7.6.3 Hỏng hóc do mỏi
Hỏng hóc do mỏi phải được ước lượng bằng cách sử
dụng tính toán hỏng hóc do mỏi thích hợp. Ví dụ, trong trường hợp quy tắc
Miner, đạt đến trạng thái giới hạn khi hỏng hóc tích lũy vượt quá 1. Do đó,
trong trường hợp này, hỏng hóc được tích lũy trong suốt tuổi thọ thiết kế của
tuabin phải nhỏ hơn hoặc bằng 1. Các tính toán hỏng hóc do mỏi phải xét đến biểu
thức, bao gồm các ảnh hưởng của cả các mức giới hạn chu kỳ và các mức sức căng
trung bình (hoặc ứng suất trung bình). Tất cả các hệ số an toàn từng phần (tải, vật liệu
và hậu quả sự cố) phải được áp dụng cho giới hạn sức căng (hoặc ứng suất) chu kỳ
để đánh giá độ gia tăng hỏng hóc liên quan đến mỗi chu kỳ mỏi. Ví dụ về biểu
thức dùng cho quy tắc Miner được nêu trong Phụ lục G.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hệ số an toàn từng phần cho các tải γf phải là 1,0
đối với tất cả các tình huống thiết kế bình thường và bất thường.
7.6.3.2 Hệ số an toàn
riêng phần của các vật
liệu không có sẵn mã đã được công nhận
Hệ số an toàn từng phần cho vật liệu, γM phải ít nhất
là 1,5 với điều
kiện đường cong SN dựa trên xác suất tồn tại 50 % và hệ số biến động <15 %.
Đối với các thành phần mà độ bền mỏi14 có hệ số biến
động lớn, tức là 15 % đến 20 % (đối với nhiều thành phần làm bằng vật liệu tổng
hợp, ví dụ bê tông cốt thép hoặc sợi tổng hợp), hệ số an toàn từng phần γM phải được
tăng
lên
tương ứng và tối thiểu đến 1,7.
Các độ bền mỏi phải được rút ra từ một
số lượng thống kê đáng kể các thử nghiệm và đạo hàm của các giá trị đặc trưng
phải tính đến các hiệu
ứng tỷ lệ, các dung sai, suy giảm do các hoạt động bên ngoài như bức xạ tia cực
tím, và các sai hỏng mà bình thường có thể không phát hiện được.
Đối với thép hàn và thép kết cấu, trước đây
xác suất tồn tại 97,7 % được sử dụng làm cơ sở cho các đường cong SN. Trong trường
hợp này gm có thể được lấy là 1,1. Trong các trường hợp, khi
có thể phát hiện sự phát triển nứt gẫy nguy hiểm nhờ việc đưa vào chương trình
kiểm tra định kỳ, có thể sử dụng giá trị thấp hơn của gm. Trong mọi trường hợp,
gm phải lớn hơn 0,9.
Đối với sợi tổng hợp, phân bố độ bền
phải được thiết lập từ dữ liệu thử nghiệm cho vật liệu thực tế. Xác suất tồn tại 95
% với độ tin cậy 95 % phải được sử dụng như làm cơ sở cho đường cong SN. Trong
trường hợp đó gm có thể được lấy là 1,2. Cách tiếp cận tương tự có
thể được sử dụng cho các vật liệu khác.
Các hệ số an toàn từng phần cho các hậu
quả sự cố:
Thành phần loại 1: γn = 1,0
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Thành phần loại 3: γn = 1,3.
7.6.3.3 Hệ số vật liệu
riêng phần có sẵn các mã thiết kế đã được công nhận
Các hệ số an toàn riêng phần kết hợp của
các tải, vật liệu và hậu quả sự cố không được nhỏ hơn các giá trị quy định
trong 7.6.3.1 và 7.6.3.2, có xét đến các điểm phân vị quy định trong mã.
7.6.4 Tính ổn định
Các bộ phận mang tải của các thành phần
“hỏng không an
toàn” không được bị biến dạng khi chịu tải thiết kế. Đối với tất cả các
thành phần khác, biến dạng đàn hồi khi chịu tải thiết kế là chấp nhận được. Biến
dạng không được xảy ra trong bất
kỳ thành phần nào khi chịu tải đặc trưng.
Giá trị tối thiểu của hệ số an toàn
riêng phần cho các tải, γf, phải được
chọn phù hợp với 7.6.2.1 để thu được giá trị thiết kế. Các hệ số an toàn từng
phần của vật liệu không được nhỏ hơn giá trị quy định trong 7.6.2.2.
7.6.5 Phân tích độ
lệch tới hạn
7.6.5.1 Quy định
chung
Phải kiểm tra xác nhận rằng không có độ
lệch nào ảnh hưởng đến tính toàn vẹn kết cấu trong các điều kiện thiết kế nêu chi tiết
trong Bảng 2.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- Hệ số an toàn từng phần, cho các tải
Các giá trị γf phải được chọn
từ Bảng 3.
- Hệ số an toàn từng phần cho các thuộc
tính đàn hồi của vật liệu
Giá trị γm phải là 1,1 trừ khi
các thuộc tính đàn hồi của thành
phần đang xét đã được xác định bằng thử nghiệm và giám sát, trong trường hợp đó giá
trị này có thể được giảm xuống. Phải đặc biệt lưu ý đến độ không đảm bảo về hình dạng
và độ chính xác của
phương pháp tính toán sai lệch.
- Hệ số an toàn từng phần cho hậu quả
sự cố
Thành phần loại 1: γn = 1,0
Thành phần loại 2: γn = 1,0
Thành phần loại 3: γn = 1,3.
Sau đó, độ lệch đàn hồi phải được cộng
với vị trí không lệch
theo hướng bất lợi nhất và vị trí tạo thành được so sánh với với yêu cầu đối với
vị trí khi không có tác động.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Một trong những lưu ý quan trọng nhất
là nhằm kiểm
tra xác nhận rằng sẽ không xảy ra sự va chạm cơ học giữa cánh và cột tháp.
Nói chung, độ lệch cánh phải được tính cho các
trường hợp tải giới hạn cũng như cho các trường hợp tải mỏi. Độ lệch do các trường
hợp tải giới hạn có thể được tính toán dựa trên các mô hình chùm tia, mô hình
FE hoặc tương tự. Tất cả các trường hợp tải liên quan trong Bảng 2 phải được tính đến với
các hệ số an toàn tải riêng phần
liên quan.
Hơn nữa, đối với trường hợp tải
1.1 ngoại suy độ lệch đầu cánh là bắt buộc theo 7.4.1. Có thể sử dụng phân
tích độ lệch động trực tiếp. Xác suất vượt quá theo hướng bất lợi nhất phải
tương tự với độ lệch đặc trưng như đối với tải đặc trưng. Sau đó, độ lệch đặc trưng được
nhân với hệ số an toàn kết hợp của các tải, vật liệu và hậu quả sự cố và được bổ
sung vào vị trí không bị lệch theo hướng bất lợi nhất và vị trí tạo ra so với
yêu cầu đối với trường hợp không có tác động.
7.6.6 Hệ số an toàn
từng phần đặc biệt
Các giới hạn dưới của hệ số an toàn từng
phần của các tải có thể được sử dụng khi các độ lớn tải được thiết lập bằng
cách đo hoặc bằng phân tích được xác nhận bởi phép đo có độ tin cậy cao hơn bình
thường. Các giá trị của tất cả các hệ số an toàn từng phần được sử dụng phải được
quy định trong tài liệu thiết kế.
8 Hệ thống điều khiển
và bảo vệ
8.1 Quy định
chung
Vận hành và an toàn tuabin gió phải được
quản lý bởi hệ thống bảo vệ và điều khiển đáp ứng các yêu cầu của điều này.
Sự can thiệp bằng tay hoặc tự động
không được làm ảnh hưởng đến các chức năng bảo vệ. Thiết bị bất kỳ cho phép can
thiệp bằng tay phải có thể nhìn thấy và nhận biết rõ ràng, bằng ghi nhãn thích hợp ở nơi
cần thiết.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
8.2 Chức
năng điều khiển
Các chức năng điều khiển tuabin gió phải
điều khiển việc vận hành theo cách chủ động hoặc bị động và giữ các tham số vận
hành trong giới hạn bình thường của
chúng. Khi có thể chọn chế độ điều khiển, ví dụ để bảo trì, từng chế độ
phải được ưu tiên hơn so với tất cả các cơ cấu điều khiển khác, ngoại trừ nút dừng
khẩn cấp. Việc
chọn chế độ phải được quản
lý bởi cơ cấu lựa chọn mà có thể bị khóa tại mỗi vị trí tương ứng với
một chế độ duy nhất. Khi một số chức năng nhất định được điều khiển số, phải
cung cấp các mã truy cập để lựa chọn chức năng một cách thích hợp.
Các chức năng điều khiển có thể quản
lý hoặc hạn chế các chức năng hoặc tham số như
- công suất;
- tốc độ rôto;
- kết nối của phụ tải điện;
- qui trình khởi động và dừng;
- xoắn cáp;
- điều chỉnh theo hướng gió.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các chức năng bảo vệ phải được kích hoạt như một
kết quả sự cố của chức năng điều khiển hoặc của các ảnh hưởng sự cố bên
trong hoặc bên ngoài hoặc sự kiện nguy hiểm. Các chức năng bảo vệ phải duy trì
tuabin gió ở trong tình trạng an toàn. Các mức kích hoạt cho các chức
năng bảo vệ phải được thiết lập theo cách để các giới hạn thiết kế không bị vượt
quá.
Các chức năng bảo vệ phải có ưu tiên
cao hơn so với các chức năng điều khiển, nhưng không cao hơn nút dừng khẩn cấp,
trong việc tiếp cận các hệ thống phanh và thiết bị ngắt kết nối mạng khi được
kích hoạt.
Các chức năng bảo vệ phải được kích hoạt
trong các trường hợp như sau:
- quá tốc độ;
- quá tải hoặc sự cố máy phát;
- rung quá mức;
- xoắn cáp bất thường (do xoay tuabin
làm quay vỏ tuabin).
Các chức năng bảo vệ phải được thiết kế
cho vận hành hỏng một cách an toàn. Nhìn chung, các chức năng bảo vệ có thể bảo vệ
tuabin gió khỏi sự cố đơn bất kỳ hoặc sự cố nguồn điện hoặc trong bất kỳ thành
phần không an toàn trong suốt tuổi thọ nào trong các hệ thống
thực hiện các chức năng bảo vệ. Sự cố đơn bất kỳ trong các cảm biến hoặc các bộ
phận kết cấu không an toàn trong suốt tuổi thọ của các hệ thống thực hiện các
chức năng điều khiển sẽ không dẫn đến sự cố các chức năng bảo vệ.
Nếu có nhiều hơn hai sự cố phụ thuộc lẫn
nhau hoặc có một nguyên nhân phổ biến, thì chúng được coi là một sự cố đơn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tất cả các thành phần không an toàn
trong suốt tuổi thọ cần thiết để thực hiện các chức năng bảo vệ không dự phòng
phải được xét đến trong thành phần loại 3 có một hệ số an toàn từng phần hậu quả
sự cố thích hợp được quy định tại 7.6. Tất cả các thành phần tới hạn trong hệ
thống bảo vệ như vậy phải được phân tích cho độ bền giới hạn, độ mỏi, độ uốn và
độ lệch tới hạn.
Trong trường hợp có mâu thuẫn, chức
năng bảo vệ phải được ưu tiên hơn chức năng điều khiển.
Không thể tự động khởi động hoặc khởi
động từ xa tuabin gió khi việc dừng được xuất phát từ một sự cố hoặc tác động
ngắt bên trong mà chúng ảnh hưởng lớn đối với sự an toàn tuabin. Nếu
một sự cố hay tác động ngắt như thế kéo theo ngắt điện lưới hay mất tải thì không thể tự
khởi động lại sau khi phục hồi lưới điện hoặc tải.
Nút dừng khẩn cấp, tại đó sẽ bỏ qua
các chức năng điều khiển, phải làm cho rôto dừng hẳn ở bất kỳ tốc độ gió nhỏ hơn giới hạn
tốc độ gió xác định để bảo trì và sửa chữa, xem 7.4.8, và tối thiểu phải trở về chế độ
không tải từ tình trạng làm việc bất kỳ. Ngoài ra, kích hoạt nút dừng khẩn cấp
phải cắt điện các hệ thống trung áp và cao áp. Các nút dừng khẩn cấp phải được
lắp đặt tại từng vị trí làm việc chính (như vỏ bọc động cơ và chân cột tháp).
Nhả nút dừng khẩn cấp bất kỳ sau khi
sử dụng đòi hỏi
có
hành động thích hợp. Sau khi nhả, chỉ có thể khởi động lại một cách tự động sau
khi giải trừ sự cố bằng tay.
8.4 Hệ thống
phanh
Hệ thống phanh phải có thể đưa
rôto vào chế độ không tải hoặc dừng hoàn toàn từ điều kiện vận hành bất kỳ. Phải
có phương tiện để làm cho rôto dừng hẳn từ trạng thái không tải nguy hiểm ở
tốc độ gió bất kỳ nhỏ hơn giới hạn tốc độ gió xác định để bảo trì và sửa chữa,
xem 7.4.8.
Khuyến cáo rằng tối thiểu
phải có một hệ thống phanh vận hành theo một nguyên lý khí động học,
để tác động trực tiếp lên rôto. Nếu khuyến cáo này không đáp ứng được, thì tối thiểu
một hệ thống phanh phải tác động trên trục rôto hoặc trên rôto của tuabin gió.
Hệ thống phanh phải được thiết kế để
thực hiện chức năng ngay cả khi nguồn điện bên ngoài của chúng bị hỏng. Phanh phải
có khả năng giữ cho rôto ở vị trí dừng hoàn toàn đối với các điều kiện gió xác định
trong ít nhất một giờ sau khi phanh. Trong thời gian mất điện lưới lâu hơn, có
thể sử dụng phanh bằng một nguồn cung cấp phụ trợ hoặc thao tác bằng tay.
9 Hệ thống cơ khí
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Một hệ thống cơ khí cho các mục đích của
tiêu chuẩn này là hệ thống bất kỳ, không bao gồm các thành phần kết cấu tĩnh,
hay các thành phần điện, mà sử dụng hoặc truyền chuyển động tương đối thông qua
kết hợp các trục, liên kết, ổ bi, ổ trượt, bánh răng và các bộ phận khác. Trong
tuabin gió, các hệ thống này có thể bao gồm các phần tử hệ thống truyền động
như các hộp số, trục và khớp nối, và các bộ phận phụ trợ như hệ thống phanh, điều
khiển độ xoay cánh, điều khiển xoay tuabin. Các bộ phận phụ trợ có thể được điều
khiển bằng điện, thủy lực hoặc khí nén.
Tất cả hệ thống cơ khí trong hệ thống
truyền động và trong hệ thống điều khiển và bảo vệ phải được thiết kế theo các
tiêu chuẩn quốc gia hoặc IEC/ISO liên quan khi sẵn có. Nếu không, phải sử dụng
các tiêu chuẩn đã công nhận.
Các hệ số an toàn từng phần phải phù hợp với thành phần loại 2 trong 7.6.1.2, trừ
khi các hệ thống rơi vào thành phần loại 3.
Phải đặc biệt thận trọng để đảm bảo hệ
thống làm mát và lọc có thể duy trì các điều kiện vận hành liên quan trong suốt
dải nhiệt độ vận hành khi thực hiện các qui trình bảo trì quy định.
Tuổi thọ còn lại của thành phần bất kỳ
chịu mài mòn trong hệ thống phanh phải được theo dõi tự động và chịu sự kiểm
tra thường xuyên. Tuabin phải được nghỉ khi không đủ điều kiện để dừng khẩn cấp thêm
nữa. Tất cả các bộ phận phanh phải được thiết kế và bảo trì để giữ cho thời
gian đáp ứng trong phạm vi mức chấp nhận được.
Tính toán tải phải được dựa trên các
mô phỏng bao gồm cả
mức hãm trung bình và mức hãm tối thiểu cho phép đối với ma sát tối thiểu và áp lực đặt
vào được dự kiến cho thiết kế. Nếu phanh có thể trượt ở mức hãm tối
thiểu, thì khi sử dụng
phanh, phải thiết kế để tránh quá nhiệt và suy giảm tính năng của phanh
và tránh rủi ro cháy.
9.2 Các lỗi
lắp ráp
Lỗi có nhiều khả năng phạm phải khi lắp
ráp hoặc ráp lại các bộ phận nhất định mà những lỗi này có thể là nguồn gây
rủi ro thì phải không
thể để xảy ra bằng cách thiết kế các bộ phận này hoặc nếu không, bằng thông tin
cung cấp trên bản thân các bộ phận này và/hoặc vỏ bọc của chúng. Thông tin
tương tự phải được đưa ra trên các bộ phận chuyển động và/hoặc vỏ bọc của chúng
trong trường hợp hướng dịch chuyển phải được biết trước để tránh rủi ro. Bất kỳ
thông tin nào khác có thể cần thiết phải được đưa ra trong hướng dẫn vận hành và hướng dẫn
bảo trì.
Trong trường hợp một lỗi kết nối có thể
là nguồn gây rủi ro, các kết nối không chính xác được thực hiện không thể theo
thiết kế hoặc phần này bị sự cố, biện pháp phòng ngừa phải được thực hiện để
tránh lỗi kết nối theo thông tin được cung cấp trên các đường ống, ống mềm và/hoặc
các khối kết nối.
9.3 Hệ thống
thủy lực hoặc khí nén
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
9.4 Hộp số
chính
Hộp số chính phải được thiết kế theo
ISO 81400-4.
9.5 Hệ thống
xoay tuabin
Hệ thống xoay tuabin có thể bao gồm
các phương tiện để duy trì hướng xoay
tuabin cố định (ví dụ các phanh thủy lực), phương tiện để thay đổi hướng đó (ví
dụ động cơ điện, hộp số và các bánh răng) và phương tiện dẫn hướng quay (ví dụ ổ
bi).
Tất cả các động cơ phải phù hợp với
các phần liên quan của Điều 10.
Các bộ phận cần thiết của hệ thống
bánh răng như bánh răng cuối của chuyển động xoay tuabin được xem như thành phần loại 2. Khi
nhiều bánh răng xoay
tuabin đảm bảo dự phòng đủ trong hệ thống
dẫn động xoay tuabin, và có thể thay thế dễ dàng, hộp số giảm tốc và bánh răng
cuối dẫn động có thể được xem như thành phần loại 1.
Sự an toàn chống rỗ được xác định theo
tiêu chuẩn ISO 6336-2. Cho phép áp dụng đường cong giới hạn trên (1) cho hệ số
tuổi thọ ZNT nhằm hạn chế rỗ. Phải chứng tỏ độ bền uốn của răng đủ lớn
theo ISO 6336-3. Các tải uốn ngược lại trên các răng của bánh răng phải được
xem xét theo Phụ lục B của ISO 6336-3. Các giá trị tối thiểu cho SF
và SH được quy định trong Bảng 5. Những giá trị này phải đạt được
bằng cách sử dụng các tải đặc trưng Fk.
Do đó chúng bao gồm hệ số an toàn từng phần cho các hậu quả γn, vật liệu γm và tải γf.
Bảng 5 - Hệ số
an toàn yêu cầu tối thiểu SH và SF cho hệ thống
bánh răng xoay tuabin
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Thành phần
loại 2
Độ bền bề mặt (rỗ)
sH ≥ 1,0
sH ≥ 1,1
Khả năng chịu mỏi uốn răng
sF ≥ 1,1
sF ≥ 1,25
Khả năng chịu uốn tĩnh
sF ≥ 1,0
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các hệ số an toàn thấp hơn có thể áp dụng
trong các trường hợp khi thực hiện giám sát hiệu quả. Nếu áp dụng các hệ số an
toàn thấp hơn 1,0, thì hướng dẫn bảo trì phải thể hiện khoảng thời gian thay thế
dự kiến.
9.6 Hệ thống
xoay cánh tuabin
Hệ thống xoay cánh tuabin có thể bao gồm
các phương tiện điều chỉnh góc xoay của cánh (ví dụ bộ dẫn động thủy lực, động
cơ điện, hộp số, phanh và bánh răng) và phương tiện dẫn hướng quay (ví dụ ổ
bi).
Các động cơ bất kỳ phải phù hợp với
các phần liên quan của Điều 10. Đối với các hệ thống xoay cánh tuabin có các bộ
dẫn động/bộ truyền động xoay cánh tuabin đảm bảo dự phòng đủ lớn, chúng có thể
được coi là thuộc thành phần loại 2.
9.7 Phanh cơ
khí thực hiện chức năng bảo vệ
Trong trường hợp các phanh cơ khí được
sử dụng cho chức năng bảo vệ, nói chung chúng là các thiết bị ma sát tác dụng
nhờ áp lực thủy lực hoặc lò xo cơ khí. Tuổi thọ còn lại của các thành phần chịu
mài mòn bất kỳ, như các má ma sát, phải được giám sát bằng hệ thống bảo vệ và điều
khiển, để giữ tuabin ở chế độ không làm việc khi chưa có đủ điều kiện cho lần dừng khẩn cấp tiếp
theo.
Tính toán tải phải được dựa trên các
mô phỏng bao gồm một phạm vi thích hợp về mức độ hãm. Nếu phanh có thể trượt
khi đang ở trạng thái đứng yên tại mức hãm tối thiểu, thì khi phanh nhằm duy trì
tuabin gió ở trạng thái tĩnh, giai đoạn trượt khi có gió luồng xoáy phải đủ ngắn
để tránh quá nhiệt và suy giảm tính năng của phanh và để tránh rủi ro
cháy.
9.8 Ổ lăn
Cơ sở của việc phân tích thông số đặc
trưng ổ lăn là TCVN 8029 (ISO 76) và TCVN 4173 (ISO 281). Đối với các ổ trục,
ví dụ như trục chính, hộp số,
thì tuổi thọ của các ổ trục này
(xác suất tồn tại 90 %) phải ít nhất là 20 năm. Các phương pháp tính toán phải
xem xét các điều kiện vận hành. Phải thận trọng khi áp dụng hệ số điều chỉnh bất
kỳ (tức là các hệ số a) theo TCVN 4173 (ISO 281).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Đối với các ổ bi, các tải thiết kế phải
phản ánh các tải được xác định theo các trường hợp tải khác nhau trong 7.4 và
các hệ số an toàn thích hợp trong 7.6. Thiết kế ổ bi phải xét đến tổng số vòng
quay dự kiến trong suốt tuổi thọ
của nó và cho dù quay liên tục như các ổ trục chính hay dao động
như các ổ bi để xoay
tuabin. Hơn nữa, cần xem xét tác động tiềm ẩn của việc bôi trơn không đủ do
chuyển động nhỏ.
Đối với ổ bi quay, tỷ số danh định
tĩnh cho tải thiết kế phải ít nhất là 1,0 theo TCVN 8029 (ISO 76). Phân bố tải
do tính linh hoạt của các bộ phận kết nối phải được xem xét một cách cẩn thận.
10 Hệ thống điện
10.1 Quy định
chung
Hệ thống điện của tuabin gió bao gồm tất
cả các thiết bị điện được lắp đặt trong từng tuabin gió đến và kể cả các đầu nối
tuabin gió; sau đây gọi là "hệ thống điện tuabin gió".
Hệ thống thu gom điện năng không được
đề cập trong tiêu chuẩn này.
10.2 Yêu cầu
chung đối với hệ thống điện
Thiết kế hệ thống điện phải đảm bảo giảm thiểu
các nguy hiểm cho con người và vật nuôi cũng như giảm thiểu các thiệt hại tiềm ẩn cho
tuabin gió và hệ thống điện bên ngoài khi vận hành và bảo trì trong
các điều kiện bên
ngoài bình thường và cực trị quy định tại Điều 6.
Hệ thống điện, bao gồm tất cả thiết bị
và thành phần điện, phải phù hợp với các tiêu chuẩn liên quan. Cụ thể, thiết
kế hệ thống điện tuabin gió phải phù hợp với các yêu cầu của IEC 60204-1. Đối với
các
tuabin
gió có chứa các mạch điện ở điện áp danh nghĩa lớn hơn 1 000 V xoay chiều hoặc
1 500 V một chiều, thiết kế hệ thống điện tuabin gió phải phù hợp với các yêu cầu
của IEC 60204-11. Hệ thống lắp đặt cố định, không phải hệ thống lắp đặt máy móc, phải
phù hợp với các yêu cầu của TCVN
7447 (IEC 60364). Nhà chế tạo phải nêu rõ (các) tiêu chuẩn thiết kế được sử dụng.
Thiết kế hệ thống điện phải tính đến bản chất biến động của việc phát điện từ
các tuabin gió.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Ngoài các yêu cầu của TCVN 7447 (IEC
60364), hệ thống điện tuabin gió phải bao gồm các thiết bị phù hợp để đảm bảo bảo
vệ tránh hoạt động sai của tuabin gió hoặc của hệ thống điện bên ngoài mà có thể
dẫn đến điều kiện hoặc trạng thái không an toàn.
10.4 Thiết bị ngắt kết nối
Phải có thể ngắt kết nối hệ thống điện
tuabin gió khỏi tất cả các nguồn năng lượng điện khi được yêu cầu để bảo trì hoặc thử
nghiệm.
Các thiết bị bán dẫn không được sử dụng
độc lập như các thiết bị ngắt kết nối.
Trong trường hợp các hệ thống chiếu
sáng và các hệ thống điện khác cần thiết cho sự an toàn trong quá trình bảo
trì, phải có các mạch phụ trợ với các thiết bị ngắt kết nối riêng của chúng,
sao cho các
mạch
này có thể vẫn được cấp năng lượng trong khi tất cả các mạch khác đã mất kết nối.
10.5 Hệ thống nối đất
Thiết kế tuabin gió phải bao gồm một hệ
thống điện cực nối đất cục bộ để đáp ứng các yêu cầu của TCVN 7447
(IEC 60364) (đối với việc vận hành chính xác hệ thống lắp đặt điện) và TCVN 9888-3
(IEC
62305-3)
(đối với bảo vệ chống sét). Phạm vi của các điều kiện đất mà đối với chúng hệ
thống điện cực đất là phù hợp phải được công bố trong tài liệu thiết kế,
cùng với các khuyến cáo đối với các điều kiện đất khác.
Lựa chọn và lắp đặt thiết bị bố trí nối
đất (điện cực đất, dây dẫn nối đất, đầu nối đất chính và các
thanh tiếp đất chính) phải được thực hiện theo TCVN 7447-5-54 (IEC 60364-5-54).
Phải có dự phòng nối đất trong hệ thống
điện bất kỳ vận hành ở điện áp trên 1 000 V xoay chiều hoặc 1 500 V một chiều
trong quá trình bảo trì.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Bảo vệ chống sét của tuabin gió phải
được thiết kế phù hợp với IEC 62305-3. Không cần thiết phải có các biện pháp bảo
vệ cho tất cả các bộ phận của tuabin gió, với điều kiện không ảnh hưởng đến an
toàn. Hướng dẫn được đưa ra trong TCVN 10687-24 (IEC 61400-24).
10.7 Cáp điện
Khi có khả năng có động vật gặm nhấm
và động vật khác gây tổn hại dây cáp, phải sử dụng các ống dẫn hoặc các cáp có
áo giáp. Các cáp ngầm phải được chôn ở độ sâu thích hợp để tránh thiệt hại do
các phương tiện giao thông hoặc thiết bị nông nghiệp. Nếu không được bảo vệ bằng
các ống dẫn, các cáp ngầm phải được ký hiệu bằng vỏ bọc cáp hoặc băng ghi nhãn
phù hợp.
10.8 Tự kích
thích
Hệ thống điện bất kỳ mà có thể tự kích
thích một tuabin gió phải bị ngắt kết nối và vẫn được ngắt kết nối an
toàn trong trường hợp mất điện lưới.
Nếu một dãy tụ được nối song song với
máy phát điện cảm ứng (tức là để bù hệ số công suất), một chuyển mạch phù hợp
được yêu cầu để ngắt dãy tụ bất cứ
lúc nào khi mất điện lưới, để tránh tự kích thích máy phát. Một cách khác, nếu
trang bị các tụ điện,
phải thích hợp để cho thấy rằng các tụ điện không thể là nguyên nhân gây tự
kích thích.
10.9 Bảo vệ chống xung sét
điện từ
Việc bảo vệ quá áp phải được thiết kế
phù hợp với các yêu cầu của TCVN 9888-4 (IEC 62305-4).
Các giới hạn bảo vệ cũng phải được thiết
kế sao cho xung sét điện từ bất kỳ truyền tới thiết bị điện sẽ không
vượt quá các giới hạn được quy định bởi các mức cách điện thiết bị.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các đặc trưng chất lượng điện năng của
tuabin gió phải được đánh giá phù hợp với IEC 61400-21.
Các quy trình trong IEC 61400-21 có thể
được sử dụng để chứng tỏ sự phù hợp với các yêu cầu của người vận hành mạng
phân phối công cộng hoặc mạng truyền dẫn.
10.11 Tương thích
điện từ
Phát xạ của các nhiễu dẫn điện được đề cập
trong 10.9.
Phát xạ của các nhiễu bức xạ phải đáp ứng
các yêu cầu của IEC 61000-6-4.
Miễn nhiễm đối với các nhiễu dẫn điện được
đề cập trong 10.6.
Miễn nhiễm đối với các nhiễu bức xạ phải
đáp ứng các yêu cầu của IEC 61000-6-1 hoặc IEC 61000-6-2. Nhà chế tạo tuabin phải
nêu rõ áp dụng
tiêu chuẩn nào trong hai tiêu chuẩn trên cho thiết kế tuabin gió.
11 Đánh giá tuabin
gió đối với các điều kiện vị trí cụ thể
11.1 Quy định
chung
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a) chứng minh rằng tất cả các điều kiện
này không khắc nghiệt hơn các điều kiện giả định cho thiết kế tuabin gió, xem
11.9;
b) chứng minh rằng về tính
toàn vẹn kết cấu đối với các
điều kiện đều bằng hoặc khắc
nghiệt hơn các điều kiện tại chỗ, xem 11.10.
Nếu các điều kiện bất kỳ khắc nghiệt
hơn các điều kiện giả định trong thiết kế, việc tương thích về kết cấu và về điện
phải được chứng minh bằng cách sử dụng
cách tiếp cận thứ hai.
Các hệ số an toàn riêng phần đối với
các tải trong 7.6.2.1 giả định rằng việc đánh giá tại chỗ cho các điều kiện gió
bình thường và cực trị đã được thực hiện
theo các yêu cầu tối thiểu trong điều này.
11.2 Đánh giá độ
phức tạp địa hình của vị trí
Độ phức tạp của vị trí được đặc trưng
bởi độ dốc của địa hình và các thay đổi
của địa hình so với mặt phẳng.
Để thu được độ dốc của địa hình, các mặt
phẳng được xác định phù hợp với địa hình trong phạm vi các khoảng cách cụ thể
và các độ rộng cung quét cho tất cả các cung quét hướng gió xung quanh tuabin
gió và đi qua đế cột tháp. Độ dốc, được sử dụng trong Bảng 4, biểu thị độ dốc của
các đường trung bình khác nhau của các cung quét đi qua các đế cột tháp và được
nằm trong mặt phẳng thích hợp.
Theo đó, sự thay đổi địa hình so
với mặt phẳng cố định biểu
thị khoảng cách, dọc theo đường thẳng đứng, giữa mặt phẳng thích hợp và địa hình tại
các điểm bề mặt.
Bảng 4 - Các
chỉ số sự phức tạp địa hình
Phạm vi khoảng-cách
tính từ
tuabin
gió
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Độ dốc lớn nhất
của mặt phẳng cố định
Thay đổi địa hình
tối đa15
<5 zhub
360o
≤0,3 zhub
< 10zhub
30o
<10o
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
< 20zhub
30o
≤ 1,2 zhub
Độ phân giải các lưới bề mặt được sử dụng
để đánh giá độ phức tạp địa hình không được vượt quá giá trị nhỏ nhất trong hai
giá trị 1,5 zhub và 100 m.
Vị trí phải được xem là phức tạp nếu
15 % năng lượng trong gió tới từ các cung quét không phù hợp
với tiêu chí trong Bảng 4 và được xem là đồng đều, nếu nhỏ hơn 5 % năng
lượng trong gió tới từ các cung quét không phù hợp.
Chỉ số độ phức tạp ic được
xác định, sao cho ic = 0 khi nhỏ hơn 5 % năng lượng đến từ các cung
quét phức tạp, và ic = 1 khi nhiều hơn 15 % năng lượng đến từ các
cung quét phức tạp. Ở khoảng giữa hai giá trị, ic thay đổi tuyến tính.
11.3 Điều kiện
gió cần thiết để đánh giá
Phải đánh giá các giá trị của các tham
số sau tại vị trí tuabin gió:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- hàm mật độ xác suất tốc độ gió p(Vhub)
trong phạm vi từ Vin đến Vout;
- độ lệch chuẩn luồng xoáy xung quanh (được ước lượng theo giá trị trung
bình độ lệch chuẩn của thành phần chiều dọc16) và độ lệch chuẩn của ở Vhub giữa Vin
và Vout và Vhub bằng với Vref;
- độ nghiêng của luồng;
- trượt gió17;
- khối lượng riêng của không khí.
Khi không có dữ liệu vị trí về khối lượng
riêng của không khí, phải giả
thiết rằng khối lượng riêng của không khí phù hợp với ISO 2533:1975,
hiệu chỉnh thích hợp theo
nhiệt độ hàng năm.
Khoảng bin tốc độ gió bất kỳ được sử dụng
ở trên là 2 m/s hoặc ít hơn, và các cung quét hướng gió phải là 30o
hoặc nhỏ hơn. Tất cả các tham
số, ngoại trừ khối lượng riêng của không khí, phải có sẵn như các hàm của hướng
gió, được cho dưới dạng trung bình 10 min.
Tham số18 vị trí gió phải
- được đo trong phạm vi 0,2 Vref và 0,4 Vref
rồi ngoại suy, hoặc
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nếu sử dụng các phép đo, các điều kiện
vị trí phải tương quan với dữ liệu trong thời gian dài từ các trạm khí tượng địa
phương có sẵn trừ khi chúng có thể cho thấy là ít thay đổi. Giai đoạn giám sát
phải đủ dài để thu được tối thiểu sáu tháng dữ liệu đáng tin cậy. Khi các biến
động theo mùa góp phần đáng kể vào các điều kiện gió, giai đoạn giám sát phải đủ dài để có chứa
các ảnh hưởng này.
Giá trị của độ lệch chuẩn của thành phần hướng dọc
phải được xác định bằng cách sử dụng các kỹ thuật thống kê thích hợp áp
dụng cho các dữ liệu đo được và khử hướng thích hợp. Khi các tác động của địa
hình hay cục bộ khác có thể ảnh hưởng đến cường độ luồng xoáy, các tác động này
phải là đại diện trong dữ liệu. Các đặc trưng của máy đo gió, tốc độ lấy mẫu và
thời gian trung bình được sử dụng để thu thập dữ liệu đo được phải được xem xét
khi đánh giá cường độ luồng xoáy.
11.4 Đánh giá các
ảnh hưởng luồng rẽ khí từ các tuabin gió lân cận
Các ảnh hưởng luồng rẽ khí từ các
tuabin gió lân cận trong phát điện phải được xem xét. Việc đánh giá sự thích hợp
của tuabin gió tại một vị trí trong trang trại gió phải tính đến các đặc trưng
dòng luồng xoáy và đặc trưng xác định liên quan đến một hoặc nhiều luồng rẽ khí
từ các máy ở hướng đầu gió, bao gồm các ảnh hưởng của khoảng cách giữa các máy,
đối với tất cả các tốc độ
gió xung quanh và các hướng gió liên quan đến phát điện.
Việc tải tăng lên thường được
giả định là kết
quả của các ảnh hưởng luồng rẽ khí có thể được tính đến bằng cách sử dụng
cường độ luồng xoáy hiệu quả, trong đó bao gồm đại diện đầy đủ các ảnh hưởng trên tải của
luồng xoáy xung quanh, ảnh hưởng rời rạc và các ảnh hưởng luồng rẽ khí luồng xoáy.
Đối với các tính toán mỏi, cường độ luồng
xoáy hiệu quả leff có thể có được theo Phụ lục D.
Nói chung, luồng xoáy hiệu quả đối với các tải gây
mỏi và tải tới
hạn khác nhau không thể được giả thiết như nhau.
11.5 Đánh giá các
điều kiện môi trường
khác
Các điều kiện môi trường dưới đây phải
được đánh giá để so sánh với các giả thiết đưa ra trong thiết kế tuabin gió:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- đóng băng, mưa đá và tuyết;
- độ ẩm;
- sét;
- bức xạ mặt trời;
- hoạt chất hóa học;
- độ mặn.
11.6 Đánh giá các
điều kiện địa chấn
Không có các yêu cầu về khả năng chịu
động đất đối với các tuabin loại tiêu chuẩn vì các sự kiện như vậy chỉ được thiết
kế cho một vài khu vực trên thế giới. Không đòi hỏi các phân tích đánh giá động
đất đối với các
vị trí đã được loại trừ theo mã địa chấn cục bộ có thể áp dụng do hoạt động địa
chấn yếu của chúng. Đối với các địa điểm mà các trường hợp tải địa chấn được mô tả
dưới đây là quan trọng, tính toàn vẹn kỹ thuật phải được minh chứng cho các điều
kiện vị trí tuabin gió. Việc đánh giá có thể dựa trên Phụ lục C. Đánh giá tải
phải tính đến sự kết hợp tải địa chấn với các tải vận hành xuất hiện thường
xuyên đủ lớn khác.
Tải địa chấn phải phụ thuộc vào các
yêu cầu gia tốc mặt đất và phổ đáp ứng như quy định trong các mã địa phương.
Nếu mã địa phương không có sẵn hoặc không cung cấp phổ đáp ứng và
gia tốc mặt đất, phải thực hiện đánh giá thích hợp các tham số này.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tải địa chấn phải được xếp chồng với tải
vận hành và phải
tương đương hoặc lớn hơn
a) các tải trong phát điện bình thường
lấy trung bình trong suốt tuổi thọ;
b) các tải trong quá trình dừng khẩn cấp đối với một
tốc độ gió đã chọn để các tải trước khi dừng bằng với giá trị
thu được trong a).
Hệ số an toàn từng phần đối với tải của
tất cả các
thành phần tải phải là 1,0.
Đánh giá tải địa chấn có thể được thực
hiện thông qua các phương pháp miền tần số, trong trường hợp này, các
tải vận hành được
cộng trực tiếp vào tải địa chấn.
Đánh giá tải địa chấn có thể được thực hiện
thông qua phương pháp miền thời gian, trong trường hợp này, các mô
phỏng đủ lớn được thực hiện để đảm bảo các tải vận hành đại diện cho các giá trị
được
lấy
trung bình theo thời gian nêu trên.
Số lượng các phương thức rung tự nhiên
của cột tháp được sử dụng trong các đánh giá nêu trên phải được lựa chọn phù hợp
với mã địa chấn đã công nhận. Trong trường hợp không có mã này, phải sử dụng
các phương thức liên tục có tổng khối lượng của phương thức bằng 85 % khối
lượng tổng.
Việc đánh giá khả năng chịu đựng của kết
cấu có thể chỉ giả định đáp
ứng đàn hồi, hoặc tiêu tán năng lượng uốn. Tuy nhiên, quan trọng là
tiêu tán năng lượng uốn được đánh giá một cách chính xác cho các loại kết cấu cụ
thể được sử dụng, đặc biệt đối với các kết cấu thanh giằng và các mối ghép bắt
bu lông.
Một cách tiếp cận bảo toàn để tính toán và kết
hợp các tải trên cột tháp được quy định tại Phụ lục C. Quy trình này không được
sử dụng nếu hoạt động địa chấn là nguyên nhân gây ra tải đáng kể lên kết cấu
không phải là cột tháp.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các điều kiện điện bên ngoài tại các đầu
nối tuabin gió ở vị trí dự kiến phải
được đánh giá để đảm bảo tương thích với các điều kiện thiết kế điện. Các điều
kiện điện bên ngoài phải bao gồm như sau19:
- điện áp bình thường và dải điện áp
bao gồm các yêu cầu để vẫn ở vị trí kết nối hoặc ngắt kết nối trong phạm vi điện
áp và khoảng thời gian được quy định;
- tần số bình thường, dải tần số và tốc
độ thay đổi, bao gồm các yêu cầu để vẫn ở vị trí kết nối hoặc ngắt kết nối trong
phạm vi tần số và khoảng thời gian được quy định;
- không cân bằng điện áp được quy định
như phần trăm điện áp thứ tự ngược đối với các sự cố đối xứng và không đối xứng;
- phương pháp nối đất trung tính;
- phương pháp phát hiện/bảo vệ sự cố nối
đất;
- số lần mất điện lưới hàng năm;
- các chu kỳ tự động đóng lại;
- quy trình bù công suất phản kháng
yêu cầu;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- trở kháng ngắn mạch
pha-pha và pha-đất tại các đầu nối tuabin gió;
- biến dạng sóng hài điện áp nền của
điện lưới;
- có đường điện mang tín hiệu, nếu có,
và cùng tần số;
- các biên dạng gió sự cố đối với các
yêu cầu về khả năng dự phòng;
- yêu cầu kiểm soát hệ số công suất;
- yêu cầu tốc độ biến đổi; và
- yêu cầu tương thích lưới khác.
11.8 Đánh giá các
điều kiện đất
Các thuộc tính đất tại vị trí dự kiến
phải được đánh giá bởi một kỹ sư địa chất có trình độ chuyên môn, có tham khảo
các mã xây dựng sẵn có ở địa
phương.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Có thể hoàn thành đánh giá tính toàn vẹn
kết cấu bằng cách
so sánh các giá trị tham số gió của vị trí với tham số như thế được sử dụng
trong thiết kế. Một tuabin gió là thích hợp đối với một vị trí khi đáp ứng các
điều kiện sau:
- ước tính tại chỗ của tốc độ gió lấy
trung bình trong 10 min cực trị tại
chiều cao của hub có tần suất xuất hiện là 50 năm phải nhỏ hơn Vref20;
- giá trị vị trí của hàm mật độ xác suất của Vhub
phải nhỏ hơn hàm mật độ xác suất thiết kế (xem 6.3.1.1) tại tất cả các giá trị của
Vhub
nằm
trong khoảng từ 0,2 Vref đến 0,4 Vref;
- giá trị đại diện của độ lệch chuẩn
luồng xoáy, σ1, (xem công thức
(11)) phải lớn hơn hoặc bằng giá trị vị
trí của điểm phân vị 90 % được
ước lượng của độ lệch chuẩn luồng xoáy
tại tất cả các giá trị Vhub nằm trong khoảng từ 0,2 Vref đến 0,4 Vref, nghĩa là
σ1 ≥ + 1,28
(34)
Khi địa hình phức tạp, ước tính độ lệch
chuẩn của thành phần dọc luồng xoáy phải được tăng để tính đến độ biến dạng của
dòng luồng xoáy21. Độ nghiêng luồng xoáy tại vị trí, được
lấy là giá trị lớn nhất của tất cả các hướng, phải nhỏ hơn giá trị quy định tại
6.3. Khi không có dữ liệu hoặc các tính toán vị trí cho độ nghiêng luồng và địa
hình phức tạp, phải giả định rằng luồng luôn song song với mặt phẳng lắp đặt,
xem 11.2, trong phạm vi 5 zhub tính từ tuabin
gió.
Số mũ trượt gió thẳng đứng lấy trung
bình theo vị trí,α, đối với hướng gió phải nhỏ hơn giá trị quy định tại 6.3.1.2
và lớn hơn ‘không’. Trường
hợp không có dữ liệu vị trí cho trượt gió, số mũ phải được tính toán
có xét đến địa hình và độ gồ ghề.
Khối lượng riêng của không khí trung
bình tại vị trí phải nhỏ hơn giá trị quy định tại 6.4.1 đối với các tốc độ gió
lớn hơn hoặc bằng Vr.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
σ1 ≥ leff . Vhub
(35)
Chỉ dẫn để tính toán Ieff có thể được
tìm thấy trong
Phụ lục D.
Hơn nữa, phải chứng minh rằng cắt theo chiều
ngang cụ thể tại vị trí do các luồng rẽ khi từng phần không vượt
quá EWS trong 6.3.2.6 và rằng luồng xoáy cực trị cụ thể tại vị trí 23, bao gồm
các ảnh hưởng luồng rẽ khí, không vượt quá mô hình ETM trong 6.3.2.3. Để xác định
luồng xoáy cụ thể tại vị trí, phải tính đến các điều kiện cụ thể tại vị trí, tần
số của các tình huống luồng rẽ khí và bố trí trang trại gió.
11.10 Đánh giá
tính toàn vẹn kết cấu bằng tính toán tải xét đến các điều kiện vị trí cụ thể
Việc chứng minh phải bao gồm so sánh
các tải và các độ lệch được tính toán đối với các điều kiện vị trí tuabin
gió cụ thể với các giá trị tính được trong thiết kế, có tính đến các giới hạn dự phòng
và ảnh hưởng của môi trường độ bền của kết cấu. Các tính toán phải
tính đến các biến động điều kiện gió với hướng gió và tốc độ gió trung bình,
các hiệu ứng luồng rẽ khí, v.v...
Khi không có dữ liệu vị trí cho các
thành phần luồng xoáy và địa hình phức tạp, phải giả định rằng độ lệch chuẩn luồng
xoáy hai bên và hướng lên tương đối so với thành phần hướng dọc bằng 1,0 và
0,7, tương ứng.
Trong trường hợp các hiệu ứng luồng rẽ
khí, phải kiểm
tra xác nhận rằng tính toàn vẹn kết
cấu không bị ảnh hưởng đối với các trạng thái giới hạn mỏi và tới hạn. Đối với
giới hạn mỏi trong DLC
1.2 σ1 trong luồng
xoáy bình thường, mô hình được thay bằng một mô hình luồng xoáy luồng rẽ khí
thích hợp, ví dụ Ieff trong Phụ lục
D.
Đối với các phân tích trạng thái giới
hạn biên, DLC 1.1 hoặc DLC 1.3, cũng như DLC 1.5, phải được áp dụng với các điều
kiện cụ thể tại vị trí bao gồm các hiệu ứng luồng rẽ khí thể hiện bằng
các mô hình thích hợp. NTM đối
với các tải ULS có thể được thiết lập cho luồng xoáy xung quanh đặc trưng phía trong
các trang trại gió lớn được xác định theo Phụ lục D, công thức (D.4).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
12 Lắp ráp, lắp đặt
và lắp dựng
12.1 Quy định
chung
Nhà chế tạo tuabin gió phải có hướng dẫn
lắp đặt, mô tả rõ ràng các yêu cầu lắp đặt cho kết cấu và thiết bị của tuabin
gió. Việc lắp đặt tuabin gió phải được thực hiện bởi các nhân viên được đào tạo
hoặc hướng dẫn về các hoạt động này.
Vị trí tuabin gió phải được chuẩn bị,
duy trì, vận hành và quản lý để công việc có thể được thực hiện một cách an
toàn và hiệu quả. Điều này bao gồm các quy trình để ngăn chặn xâm nhập trái
phép ở nơi có thể. Người vận hành phải xác định và loại bỏ các nguy hiểm tồn tại
và tiềm ẩn.
Phải chuẩn bị danh sách kiểm tra các
hoạt động dự kiến và phải lưu giữ các bản ghi công việc và kết quả công việc đã
hoàn thành.
Khi cần thiết, nhân viên lắp đặt phải sử
dụng thiết bị bảo vệ mắt, chân, thính giác và đầu. Tất cả nhân viên
leo cột tháp, hoặc làm việc trên mặt đất hoặc mặt nước, phải được đào tạo cho
công việc như vậy và phải sử dụng các
đai an toàn, hỗ trợ leo an toàn hoặc các thiết bị an toàn khác. Khi cần thiết,
một phương tiện hỗ trợ nổi trên mặt nước
phải được sử dụng.
Tất cả các thiết bị phải được giữ
trong tình trạng tốt và phù hợp với nhiệm vụ được dự định. Các cần cẩu, cần trục
và thiết bị nâng hạ, bao gồm tất cả cáp treo, móc và các dụng cụ khác, phải
thích hợp cho việc nâng hạ an toàn.
Cần xem xét cụ thể hệ thống lắp đặt
các tuabin gió trong các điều kiện bất thường, ví dụ như mưa đá, sét, gió lớn,
động đất, đóng băng,
v.v...
Trong trường hợp cột tháp đứng mà
không có vỏ tuabin, các biện pháp thích hợp phải được thực hiện để tránh tốc độ
gió tới hạn của luồng xoáy tạo ra các dao động ngang. Các tốc độ gió tới hạn và
các biện pháp đề phòng phải được nêu trong hướng dẫn lắp đặt.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Việc lắp ráp, lắp dựng và lắp đặt các
tuabin gió và thiết bị liên quan phải được lập kế hoạch theo thứ tự công việc
được thực hiện một cách an toàn và phù hợp với các quy định của địa phương và quốc gia.
Ngoài các quy trình đảm bảo chất lượng, khi thích hợp, việc lập kế
hoạch phải bao gồm xem xét những điều sau đây:
- các quy tắc để thực hiện an toàn
công việc đào đất;
- các bản vẽ và thông số kỹ
thuật chi tiết của công việc và kế hoạch kiểm tra;
- các quy tắc để xử lý đúng đắn các công
trình ngầm, như các nền
móng, bu lông, neo và cốt thép;
- các quy tắc cho thành phần bê tông,
giao hàng, lấy mẫu, đổ, hoàn thiện và định vị ống dẫn;
- các quy tác an toàn nổ;
- các quy trình lắp đặt cột tháp và
các dây neo.
12.3 Các điều kiện
lắp đặt
Trong khi lắp đặt tuabin gió, vị trí
phải được duy trì trong tình trạng sao cho không có rủi ro về an toàn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tiếp cận vị trí phải an toàn và phải tính đến các yếu
tố sau:
- các hàng rào và các tuyến đường đi lại;
- giao thông;
- mặt đường;
- chiều rộng đường bộ;
- khoảng cách an toàn;
- khả năng chịu tải trọng;
- chuyển động của thiết bị tại vị trí.
12.5 Các điều kiện
môi trường
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- tốc độ gió;
- tuyết và đóng băng;
- nhiệt độ môi trường;
- bão cát;
- sét;
- tầm nhìn;
- mưa.
12.6 Tài liệu
Nhà chế tạo tuabin gió phải cung cấp
các bản vẽ, thông số kỹ thuật và hướng dẫn cho các quy trình lắp ráp, lắp đặt
và lắp dựng tuabin gió. Nhà chế tạo phải cung cấp các chi tiết về tất cả các tải,
trọng lượng, các điểm nâng và các công cụ đặc biệt và các quy trình cần thiết cho việc
xử lý và lắp đặt tuabin gió.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tháo dỡ và vận chuyển thiết bị máy
phát điện tuabin gió trong khi lắp đặt phải được thực hiện với thiết bị đã được
xác nhận là phù hợp với nhiệm vụ và tuân thủ thông lệ đề xuất của nhà chế tạo.
Các tuabin gió thường được bố trí trên
địa hình đồi núi. Do đó, thiết bị nặng phải được đặt xuống theo cách để không
thể trượt. Một khu vực bằng phẳng có kích thước phù hợp được ưu tiên cho tất cả
các thao tác tháo dỡ và lắp ráp. Khi không có một khu vực như vậy, tất cả các thiết bị
nặng phải được chặn chắc chắn ở một vị trí ổn định.
Khi có nguy cơ bị dịch chuyển do gió với
rủi ro gây hỏng, các cánh, vỏ tuabin, các bộ phận khí động học khác và bộ phận dễ bị lật
phải được giữ chắc chắn bằng dây thừng và các chốt, hoặc các cọc neo vào đất.
12.8 Hệ thống
neo/nền móng
Khi nhà chế tạo có quy định liên quan
đến lắp đặt hoặc lắp ráp an toàn, phải sử dụng các dụng cụ đặc biệt, đồ gá lắp,
các cơ cấu cố định và các dụng cụ khác.
12.9 Lắp ráp
tuabin gió
Tuabin gió phải được lắp ráp theo hướng
dẫn của nhà chế tạo. Phải thực hiện kiểm tra để xác nhận bôi trơn
đúng và ổn định trước khi vận hành của tất cả các thành phần.
12.10 Lắp dựng
tuabin gió
Tuabin gió phải được lắp dựng bởi
các nhân viên được đào tạo và huấn luyện trong thực hành lắp dựng thích hợp và
an toàn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tất cả các phần tử khi chuyển
động (xoay hoặc dịch chuyển) có thể dẫn đến nguy hiểm tiềm ẩn phải được giữ chắc
chắn tránh chuyển
động không chủ ý trong suốt quá trình lắp dựng.
12.11 Chốt và các cấu
kiện liên kết
Các chốt có ren và các thiết bị liên kết
khác phải được lắp đặt theo mômen xoắn và/hoặc các chỉ dẫn khác do
nhà chế tạo tuabin gió khuyến cáo. Các chốt được xác định là quan trọng phải được
kiểm tra và các quy trình xác nhận mômen xoắn lắp đặt và các yêu cầu khác phải
được thu nhận và sử dụng.
Đặc biệt, thực hiện kiểm tra để xác nhận
như sau:
- kết nối và lắp ráp thích hợp của các
dây chằng, dây cáp, các vít tăng đơ,
các cọc lắp ráp và các dụng cụ và máy móc khác;
- cấu kiện liên kết thích hợp của các
thiết bị nâng hạ yêu cầu để lắp dựng an toàn.
12.12 Cần cẩu, cần
trục và thiết bị nâng hạ
Cần cẩu, cần trục và thiết bị nâng hạ,
bao gồm tất cả các cáp nâng tải, các móc và dụng cụ khác yêu cầu để lắp dựng an
toàn, phải đầy đủ để nâng an toàn và định vị cuối cùng các tải. Hướng dẫn và
tài liệu của nhà chế tạo liên quan đến lắp dựng và tháo dỡ phải cung cấp thông tin về
các tải dự kiến và các điểm nâng an toàn cho các thành phần và/hoặc các bộ phận.
Tất cả các thiết bị
cẩu, dây treo và móc phải được thử nghiệm và chứng nhận an toàn cho tải.
13 Vận hành thử, vận
hành và bảo trì
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các quy trình vận hành thử, vận hành,
kiểm tra, và bảo trì phải được
quy định trong tài liệu hướng dẫn của tuabin gió có xem xét thích hợp về an
toàn của nhân viên.
Thiết kế phải kết hợp các
quy định về tiếp cận an toàn để kiểm tra và bảo trì tất cả các
thành phần.
Các yêu cầu của Điều 10 cũng đề cập đến
thiết bị đo điện được lắp đặt tạm thời trong tuabin gió với mục đích đo lường.
Khi cần thiết, nhân viên vận hành và bảo
trì phải sử dụng thiết
bị bảo vệ mắt, chân,
thính giác và đầu. Tất cả các nhân viên leo cột tháp, hoặc làm việc trên mặt đất
hoặc mặt nước, phải được đào tạo về công việc này và phải sử dụng đai an toàn,
phương tiện hỗ trợ leo an toàn hoặc các thiết bị an toàn khác. Khi cần thiết,
một phương tiện hỗ trợ nổi trên mặt nước được sử dụng.
13.2 Yêu cầu thiết
kế để vận hành, kiểm
tra và bảo trì an toàn
Phải có thể vận hành bình thường
tuabin gió bởi nhân viên vận hành trên mặt đất. Phải có thao tác bằng tay, cục
bộ được ưu tiên hơn so hệ thống điều khiển từ xa/tự động.
Các sự kiện bên ngoài khi phát hiện
như là sự cố nhưng không quan trọng đối với an toàn trong tương lai của tuabin
gió, như mất và phục hồi phụ tải điện, có thể cho phép tự động quay về hoạt động bình
thường sau khi kết thúc chu trình dừng.
Tấm bảo vệ được thiết kế để bảo vệ
nhân viên chống tiếp xúc ngẫu nhiên với các thành phần dịch chuyển phải được cố định,
trừ khi thấy trước tiếp cận thường xuyên, thì khi đó các tấm bảo
vệ này có thể dịch chuyển.
Tấm bảo vệ phải:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- không dễ đi vòng qua;
- khi có thể, cho phép thực hiện bảo
trì thiết yếu mà
không cần tháo dỡ.
Các quy định phải được thực hiện khi
thiết kế để sử dụng thiết bị chẩn đoán tìm sự cố.
Để đảm bảo an toàn cho nhân viên kiểm
tra và bảo trì, thiết kế phải có
- các tuyến tiếp cận và vị trí làm việc
an toàn cho việc kiểm tra và bảo trì định kỳ;
- đầy đủ phương tiện để bảo vệ nhân
viên tránh tiếp xúc ngẫu nhiên với các thành phần quay hoặc bộ phận chuyển động;
- dự phòng cho các dây cáp bảo hiểm kẹp
chặt và các đai lưng an toàn hoặc các thiết bị bảo vệ khác đã được phê duyệt
khi leo hoặc làm việc trên cao so với mặt đất;
- các quy định để khống chế vòng quay của
rôto và cơ chế xoay tuabin hoặc chuyển động cơ học khác như xoay cánh, trong
khi làm việc theo các điều kiện gió và các tình huống thiết kế được quy định tại
DLC 8.1, cũng như quy định để giải trừ khống chế an toàn;
- các tín hiệu cảnh báo cho các dây dẫn
đang mang điện;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- bảo vệ phòng cháy thích hợp cho
nhân viên
- một đường thoát dự phòng khỏi vỏ
tuabin.
Quy trình bảo trì đòi hỏi phải
có các dự phòng an toàn cho nhân viên đi vào không gian làm việc kín bất kỳ,
như hub hoặc phía trong cánh để đảm bảo tình huống nguy hiểm bất kỳ sẽ được các
nhân viên dự phòng biết đến để ngay lập tức khởi động các quy trình
giải cứu,
nếu
cần..
13.3 Hướng dẫn liên quan đến
vận hành thử
Nhà chế tạo phải cung cấp các hướng dẫn
để vận hành thử.
13.3.1 Cấp điện
Hướng dẫn của nhà chế tạo phải có quy trình
bắt đầu cấp điện hệ thống
điện tuabin gió.
13.3.2 Thử nghiệm vận
hành thử
Hướng dẫn của nhà chế tạo phải có các
quy trình thử nghiệm tuabin gió sau khi lắp đặt, để xác nhận vận hành thích hợp,
an toàn và đúng chức năng cho tất cả các thiết bị, cơ cấu điều khiển và các thiết
bị. Thử nghiệm này phải bao gồm nhưng không giới hạn
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- dừng an toàn;
- dừng khẩn cấp an toàn;
- dừng an toàn khi quá tốc độ hoặc mô
phỏng đại diện của chúng;
- thử nghiệm chức năng hệ thống bảo vệ.
13.3.3 Bản ghi
Hướng dẫn của nhà chế tạo phải có hướng
dẫn lưu giữ thích hợp các bản ghi mô tả thử nghiệm, vận hành thử, các tham số
điều khiển và các kết quả.
13.3.4 Hoạt động
sau vận hành thử
Khi hoàn tất lắp đặt, và hoạt động kéo
theo đối với giai đoạn chạy thử do nhà chế tạo khuyến cáo, phải hoàn thành các
hoạt động cụ thể mà nhà chế tạo có thể yêu cầu.
Các hoạt động này có thể bao gồm,
nhưng không giới hạn, đặt tải trước cho các chốt, thay chất lỏng bôi trơn,
kiểm tra các thành phần khác để cài đặt và vận hành thích hợp và điều chỉnh các
tham số điều khiển phù hợp.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
13.4 Sổ tay hướng
dẫn vận hành
13.4.1 Quy định
chung
Sổ tay hướng dẫn vận hành phải được nhà chế tạo
tuabin gió cung cấp và được bổ sung thông tin về các điều kiện đặc biệt tại địa
phương ở thời điểm vận hành thử khi thích hợp. Sổ tay phải bao gồm, nhưng không
giới hạn:
- yêu cầu bất kỳ cho việc
vận hành phải được thực hiện bởi nhân viên đã được đào tạo hoặc hướng dẫn thích
hợp trong hoạt động này;
- giới hạn vận hành an toàn và mô tả hệ
thống;
- quy trình mở và dừng máy;
- danh sách hành động báo động;
- kế hoạch về quy trình khẩn cấp;
- yêu cầu đã quy định mà
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
• khi cần thiết, tất cả các nhân
viên leo cột tháp, hoặc làm việc trên mặt đất hoặc mặt nước, phải được đào tạo
về công việc này và phải sử dụng đai an toàn, phương tiện hỗ trợ leo an toàn hoặc
các thiết bị an toàn khác,
• khi cần thiết, phương tiện hỗ trợ nổi
trên mặt nước nên được sử dụng,
• sổ tay phải có sẵn cho người vận
hành và bảo trì bằng ngôn ngữ
mà người vận hành có thể đọc và hiểu.
13.4.2 Hướng dẫn
các hồ sơ vận hành và bảo trì
Sổ tay phải ghi rõ rằng các hồ sơ
về vận hành và bảo trì phải được lưu giữ và phải bao gồm những điều sau đây:
- nhận biết tuabin gió;
- năng lượng được sản xuất;
- giờ làm việc;
- giờ dừng;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- ngày và thời gian dịch vụ hoặc sửa
chữa;
- bản chất của sự cố hoặc dịch vụ;
- hành động được thực hiện;
- phụ tùng thay thế.
13.4.3 Hướng dẫn tự
động dừng đột xuất
Hướng dẫn sẽ yêu cầu rằng tự động dừng
đột xuất bất kỳ do sự cố hoặc trục trặc kéo theo, trừ khi có quy định khác
trong hướng dẫn hoặc chỉ dẫn vận hành, người vận hành phải điều tra nguyên nhân
trước khi khởi động lại
tuabin gió. Tất cả quá trình tự động dừng đột xuất phải được ghi lại.
13.4.4 Hướng dẫn đối với độ tin cậy
bị giảm
Hướng dẫn đòi hỏi phải thực hiện loại
bỏ các nguyên nhân gốc rễ của bất kỳ dấu hiệu hoặc cảnh báo bất thường hoặc độ tin cậy giảm
đi.
13.4.5 Kế hoạch các
quy trình làm việc
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- vận hành các hệ thống điện;
- phối hợp vận hành và bảo trì;
- các quy trình tiện ích cho phép;
- các quy trình leo cột tháp;
- các quy trình xử lý thiết bị;
- hoạt động trong thời tiết xấu;
- các quy trình thông tin liên lạc và
các kế hoạch khẩn cấp.
13.4.6 Kế hoạch các
quy trình khẩn cấp
Hướng dẫn vận hành phải nêu các tình huống khẩn
cấp có thể xảy ra và quy định
các hành động cần thiết của nhân viên vận hành trong các tình huống khẩn cấp
này.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong khi chuẩn bị kế hoạch các quy trình
khẩn cấp, phải tính đến rủi ro
cho thiệt hại kết cấu có thể bị
tăng lên do các tình huống như sau:
- quá tốc độ;
- các điều kiện đóng băng;
- sấm sét;
- động đất;
- đứt hoặc lỏng dây chằng;
- mất phanh;
- mất cân bằng rôto;
- các chốt bị lỏng;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- bão cát;
- cháy, lũ lụt;
- các sự cố thành phần khác.
13.5 Hướng dẫn
bảo trì
Mỗi mẫu tuabin gió có một hướng dẫn bảo
trì, trong đó tối thiểu có các yêu cầu bảo trì và các quy trình khẩn
cấp được quy định bởi nhà chế tạo tuabin gió. Hướng dẫn cũng phải cung cấp bảo
trì đột xuất.
Hướng dẫn bảo trì phải xác định các bộ
phận bị mài mòn và chỉ ra các tiêu chí để thay thế.
Các đối tượng cũng cần được đề cập
trong hướng dẫn bao gồm:
- yêu cầu bất kỳ để kiểm tra và bảo
trì phải được thực hiện bởi các nhân viên được đào tạo hoặc chỉ dẫn phù hợp với
hoạt động này, theo khoảng thời gian được quy định và tuân thủ các chỉ dẫn
trong hướng dẫn bảo trì tuabin gió;
- mô tả các hệ thống phụ trợ của
tuabin gió và hoạt động của chúng;
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- quy trình tái vận hành thử;
- các quy trình và định kỳ kiểm tra bảo
trì;
- các quy trình kiểm tra chức năng của
các hệ thống bảo vệ;
- sơ đồ kết nối bên trong và
đi dây đầy đủ;
- các quy trình kiểm tra cáp dây chằng và căng lại
và các quy trình kiểm tra bu lông và gia tải trước, bao gồm các tải lực căng và
mô men xoắn;
- các quy trình chẩn đoán và chỉ dẫn xử
lý sự cố;
- danh sách các bộ phận dự phòng được
đề xuất;
- bộ các bản vẽ lắp ráp và lắp đặt
theo vị trí;
- danh sách dụng cụ.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Phụ
lục A
(quy
định)
Các tham số thiết kế để mô tả tuabin gió cấp
S
Đối với các tuabin gió cấp S, thông
tin dưới đây phải được đưa ra trong tài liệu thiết kế.
Các tham số máy
Công suất danh định
[kW]
Phạm vi tốc độ gió vận hành ở chiều
cao của hub Vin - Vout
[m/s]
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[năm]
Các điều kiện gió
Cường độ luồng xoáy như một hàm của tốc
độ gió trung bình được sử dụng cho NTM và ETM
Tốc độ gió trung bình hàng năm [m/s]
Luồng nghiêng trung bình [dge]
Phân bố tốc độ gió (Weibull, Rayleigh,
đo được, khác)
Các tham số và mô hình biên dạng gió
Các tham số và mô hình luồng xoáy
Các tốc độ gió cực trị ở chiều cao của
hub Ve1 và Ve50
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các mô hình và tham số gió giật cực trị
trong các tần suất xuất hiện 1 năm và 50 năm
Các mô hình và tham số đổi hướng cực
trị trong các tần suất xuất hiện 1 năm và 50 năm
Các mô hình và tham số gió
giật kết hợp cực trị
Gió giật kết hợp cực trị có các tham số
và mô hình đổi hướng
Các tham số và mô hình trượt gió cực
trị
Các điều kiện điện lưới
Phạm vi và điện áp cung cấp bình thường
[V]
Phạm vi và tần số cung cấp bình thường
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Điện áp không cân bằng
[V]
Khoảng thời gian tối đa mất điện lưới
[ngày]
Số lần mất điện lưới
[1/năm]
Các chu kỳ tự động đóng lại (bản mô tả)
Phản ứng khi các sự cố bên ngoài đối xứng
và không đối xứng (mô tả)
Các điều kiện môi trường khác (trong trường
hợp có tính đến)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các phạm vi nhiệt độ bình thường
và cực trị
[oC]
Độ ẩm tương đối của không khí
[ %]
Khối lượng riêng của không khí
[kg/m3]
Bức xạ năng lượng mặt trời
[W/m2]
Mưa, mưa đá, tuyết, đóng băng
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các hạt hoạt cơ
Mô tả hệ thống chống sét
Các tham số và mô hình động đất
Độ mặn
[g/m3]
Phụ
lục B
(tham
khảo)
Các mô hình luồng xoáy
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
1) Mô hình trượt đồng nhất Mann, và
2) Mô hình gắn kết hàm mũ và phổ
Kaimal.
Các tham số cho các mô hình đã được lựa
chọn để đáp ứng các yêu cầu luồng xoáy chung đã được đưa ra trong 6.3.
B.1 Mô hình luồng
xoáy trượt đồng nhất Mann (1994)
Mô tả mô hình này khác đôi
chút so với các mô hình trước về sức căng phổ vận tốc ba chiều đã được xác định.
Mô hình này giả định rằng phổ năng
lượng đẳng hướng von
Karman (1948) bị biến dạng nhanh chóng theo một độ trượt vận tốc trung bình, đồng nhất.
Kết quả là các thành phần sức căng phổ được cho bởi
(B.1)
(B.2)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(B.3)
(B.4)
(B.5)
(B.6)
Trong đó:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
u1, u2, u3 = các thành
phần vận tốc hướng dọc, ngang, hướng lên tương ứng,
δ1, δ2, δ3 = các thành
phần vector không gian riêng biệt không thứ nguyên,
k1, k2, k3 = số sóng
không gian theo ba hướng thành phần không thứ nguyên,
=
độ lớn của vector số sóng không thứ nguyên,
=
độ lớn trước khi biến dạng trượt,
= phổ năng lượng
đẳng hướng von
Karman, không thứ nguyên,
=
nhịp biến dạng
không thứ nguyên tỷ lệ nghịch với
2F1 = Hàm siêu bội
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
γ = tham số biến dạng trượt không thứ nguyên.
Mặc dù mô hình này phức tạp hơn so với
mô hình đẳng hướng von Karman, nó chỉ chứa một tham số bổ sung, cụ thể là
tham số biến dạng trượt, γ. Khi tham số
này bằng không, mô hình đẳng hướng được phục hồi. Khi tham số này tăng lên, các
phương sai thành phần vận tốc hướng dọc và ngang tăng trong khi phương sai
thành phần vận tốc hướng lên lại giảm. Kết quả là kết cấu luồng xoáy được kéo căng theo hướng
dọc và nghiêng so với mặt phẳng 1-2.
Giả sử rằng trường vận tốc ngẫu
nhiên được tạo ra bởi mô hình được đối lưu qua tuabin ở tốc độ gió ở hub, phổ
thành phần vận tốc được quan sát tại một điểm có thể được tính bằng cách
tích phân các
thành phần sức căng phổ. Đặc biệt, phổ một chiều không thứ nguyên được đưa ra bởi
(B.7)
trong đó:
= phổ tự động số sóng đối với i, j
không thứ nguyên, hoặc phổ chéo đối với i ≠ j, và
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tương tự, đối với không gian tách rời
bình thường theo hướng dọc, kết hợp được đưa ra bởi
(B.8)
Không may là kết quả tích phân không
có các dạng giải tích đã biết và phải tính theo phương pháp số cho một giá
trị cụ thể của tham số, γ. Mann (1998)
đã thực hiện
các tích hợp như vậy và so sánh kết quả với mô hình phổ Kaimal. Một bình phương
tối thiểu phù hợp với mô hình Kaimal cho tham số cắt
γ = 3,9
(B.9)
Với các liên quan phương sai kết quả
(B.10)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(B.11)
Tóm lại, ba tham số cần thiết trong mô
hình Mann được đưa ra bởi
γ = 3,9
σiso = 0,55σ1
l = 0,8Λ1
(B.12)
Trong đó σ1 và Λ1 được quy định
trong 6.3.
Trong các mô phỏng vận tốc luồng xoáy
ba chiều, các thành phần vận tốc được xác định từ một triển khai sức căng phổ
và một xấp xỉ theo biến đổi
Fourier rời rạc. Như vậy, miền không gian ba chiều được chia thành các điểm rời
rạc cách đều nhau và vector vận tốc tại mỗi điểm được cho bởi
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(B13)
Trong đó:
u1, u2, u3 = các thành
phần vector phức, có các phần thực và ảo là các thể hiện trường vận tốc luồng xoáy
độc lập,
n1, n2, n3 = các giá trị
phức ngẫu nhiên Gaussian độc lập với mỗi số sóng khác nhau và có các phần thực
và phần ảo cùng đơn vị phương sai,
x, y, z = tọa độ của
các điểm lưới không gian,
N1, N2, N3 = số các điểm
lưới không gian theo ba hướng, và
∆ = độ phân giải lưới không gian.
Trong biểu thức này, ký hiệu Σk1,k2,k3 có nghĩa là
tổng cho tất cả các số sóng không có hướng trong lưới và có thể được thực hiện
bằng cách sử dụng
các kỹ thuật FFT. Trong các trường hợp khi miền không gian nhỏ hơn 8ℓ ở kích thước bất kỳ,
một điều chỉnh được đề xuất cho việc tìm thừa số sức căng phổ, [Ck1,k2,k3]. Quy trình
này được nêu chi tiết trong Mann (1998).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các mật độ phổ thành phần công suất được
đưa dưới dạng không thứ nguyên theo công thức:
(B.14)
trong đó
f là tần số, tính bằng Hertz,
k là chỉ số liên quan đến hướng thành
phần vận tốc (nghĩa là 1 = chiều dọc, 2 = chiều ngang, 3 = hướng lên
trên);
Sk phổ thành phần vận tốc
đơn hướng;
σk độ lệch chuẩn thành
phần vận tốc (xem công thức (B.2));
Lk tham số tỷ lệ tích phân thành
phần vận tốc,
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(B.15)
Các tham số phổ luồng xoáy được đưa ra
trong Bảng B.1.
Bảng B.1 -
Các tham số phổ luồng
xoáy cho mô hình Kaimal
Chỉ số thành
phần vận tốc (k)
1
2
3
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
σ1
0,8 σ1
0,5 σ1
Tỷ lệ tích phân, Lk
8,1 Λ1
2,7 Λ1
0,66 Λ1
Trong đó σ1 và Λ1 là các tham
số độ lệch chuẩn và tỷ lệ; tương ứng của luồng xoáy như được quy định trong
6.3.
Mô hình gắn kết số mũ sau có thể
được sử dụng khi kết hợp với các phổ tự động Kaimal để giải thích cho kết cấu
tương quan không gian của thành phần vận tốc theo hướng dọc:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(B.16)
trong đó:
Coh(r,f) hàm gắn kết được xác định
bởi độ lớn phức của mật độ phổ ngang của các thành phần vận tốc gió theo hướng
dọc ở hai điểm riêng biệt trong không gian chia cho hàm phổ tự động;
r độ lớn theo hình chiếu
của vector tách rời giữa hai điểm trên một mặt phẳng bình thường theo
hướng gió trung bình;
f tần số tính theo
Hertz;
Lc = 8,1Λ1 là tham số tỷ
lệ gắn kết.
B.3 Tài liệu
tham khảo
J.C. Kaimal, J.C. Wyngaard, Y. Izumi,
and O.R. Cote, Spectral characteristics of surface layer turbulence,
Q.J.R. Meteorol. Soc., v. 98, 1972, pp. 563-598. (Đặc trưng phổ của luồng
xoáy lớp bề mặt)
T. von Karman, Progress in the
statistical theory of turbulence, Proc. Nat. Acad. Sci., v. 34,1948, pp.
530-539. (Tiến bộ trong lý thuyết thống kê luồng xoáy)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
J. Mann, Wind field simulation,
Prob. Engng. Mech., v. 13, n. 4, 1998, pp. 269-282. (Mô phỏng trường gió)
Phụ
lục C
(tham
khảo)
Đánh giá tải động đất
Phương pháp đơn giản, bảo toàn để tính
toán tải động đất được trình bày ở đây để sử dụng khi cần thiết cho một phân
tích phức tạp có thể không dễ dàng
xác lập.
Việc đơn giản hóa về cơ bản là bỏ qua các chế
độ rung cao hơn chế độ uốn của cột tháp ban đầu, và giả thiết rằng toàn bộ kết
cấu chịu cùng gia tốc. Việc bỏ
qua chế độ thứ hai là một đơn giản hóa không bảo toàn đáng kể và được bù cho
trường hợp này bằng cách kết hợp
khối lượng cột tháp với khối lượng đầu cột tháp và đặt một tải khí động học bảo
toàn.
Phương pháp để xác định gia tốc mặt đất
vẫn phải phù hợp với 11.6. Trong trường hợp không có dữ liệu cụ thể tại vị trí,
phải thực hiện các giả thiết bảo toàn. Trong phụ lục này sử dụng các thuật ngữ
trong ISO 3010.
Quy trình bao gồm các bước sau:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- Sử dụng đáp ứng phổ thiết kế chuẩn
tác và hệ số vùng địa chấn nguy hiểm để
thiết lập gia tốc tại cột tháp đầu tiên rung, lắc tần số riêng đang giả thiết
giảm chấn 1 % giá trị giảm chấn tới hạn.
- Tính tải cho một hệ thống chịu gia tốc
ở trên trong đó tổng khối lượng
rôto, vỏ tuabin và 50 % khối lượng cột tháp được tập trung ở đầu cột tháp.
- Cộng kết quả vào các tải đặc trưng
được tính toán để dừng khẩn cấp
tại tốc độ gió danh định.
- So sánh kết quả đối với các tải thiết
kế hoặc độ chịu lực thiết kế đối với tuabin gió.
Nếu cột tháp có thể duy trì kết quả tải
kết hợp, thì không cần thiết nghiên cứu thêm. Nếu không, thực hiện một nghiên cứu
toàn diện theo 11.6.
Phụ
lục D
(tham
khảo)
Luồng rẽ khí và luồng xoáy trang trại gió
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các hiệu ứng luồng rẽ khí từ các
tuabin gió lân cận có thể được tính đến khi vận hành bình thường để tính toán mỏi
theo cường đồ luồng xoáy hiệu quả leff, Frandsen
(2007). Cường độ luồng xoáy hiệu quả - được quy định theo tốc độ gió trung bình
tại chiều cao của hub - có
thể được xác định theo
(D.1)
trong đó:
Vhub là tốc độ
gió tại chiều cao của hub;
p hàm mật độ xác suất
của hướng gió;
l là cường độ luồng xoáy của môi
trường kết hợp và dòng luồng rẽ khí từ hướng gió θ, và
m số mũ Wöhler (đường
cong SN) đối với vật liệu xem xét.
Trong phần tiếp theo, một phân bố đồng
đều p(θ|Vhub) được giả định. Cũng
có thể chấp nhận điều
chỉnh công thức để khác với phân bố đồng đều25. Phải giả thiết là tốc
độ gió trung bình trong trang trại gió không giảm.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(D.2)
Nếu giá trị nhỏ nhất {dl} < 10 D thì:
(D.3)
trong đó:
là
độ lệch chuẩn luồng xoáy xung quanh đặc trưng;
là
độ lệch chuẩn luồng xoáy xung quanh ước lượng;
là độ lệch chuẩn
ước lượng của độ lệch chuẩn luồng xoáy xung quanh
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
CT Giá trị đặc
trưng của hệ số áp lực hướng trục tuabin gió đối với vận tốc gió tương ứng ở chiều
cao của hub. Nếu hệ số áp lực hướng trục đối với các tuabin gió lân cận chưa được
biết, có thể sử dụng một giá trị chung CT = 7 c/Vhub;
di là khoảng
cách
thường
bằng với đường kính rôto, đến
tuabin gió lân cận số i;
c hằng số bằng 1 m/s;
Ieff cường độ luồng
xoáy hiệu dụng;
N số tuabin gió lân cận; và
m là số mũ đường cong Wöhler tương ứng
với vật liệu của thành phần kết cấu được xét.
Các hiệu ứng luồng rẽ khí từ các tuabin gió
"ẩn" đằng sau các máy móc khác cần được xem xét, ví dụ trong một
hàng, chỉ các luồng rẽ khí từ hai tuabin gần nhất với tuabin đang xét thì được tính đến.
Phụ thuộc vào cấu hình trang trại gió, số lượng các tuabin gió gần nhất được đưa
vào trong tính toán leff
được đưa ra trong Bảng D.1.
Các cấu hình trang trại gió được minh
họa trong Hình D.1 đối với trường hợp “bên trong một trang trại gió có nhiều
hơn 2 hàng”.
Bảng D.1 - Số
các tuabin gió gần nhất được xét đến
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
N
2 tuabin gió
1
1 hàng
2
2 hai hàng
5
Bên trong một trang trại gió có nhiều
hơn 2 hàng.
8
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a) số lượng các tuabin gió từ tuabin
được xét tới "biên" của các trang trại gió là nhiều hơn 5, hoặc
b) khoảng cách giữa các hàng vuông góc
với hướng gió chủ yếu là ít hơn 3D, do
đó luồng xoáy xung quanh đặc trưng kéo theo phải được ước lượng thay vì ngoại trừ trong biểu thức cho :
(D.4)
trong đó:
(D.5)
Trong đó dr và df
là tách biệt với các đường kính rôto trong các hàng và tách biệt giữa các hàng
tương ứng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
D.2 Tài liệu
tham khảo
FRANDSEN S. (2007) Turbulence and
turbulence generated loading in wind turbine clusters, Risø report
R-1188. (Luồng xoáy và luồng xoáy tạo ra tải trong các nhóm tuabin gió)
Phụ
lục E
(tham
khảo)
Dự báo phân bố gió đối với các vị trí tuabin
gió bằng các phương pháp đo lường so sánh dự báo (MCP)
Việc đánh giá mức độ phù hợp của một
tuabin gió đối với vị trí cụ thể đòi hỏi đánh giá các tham số tốc độ
gió tới hạn theo thiết kế tại vị trí đó. Thông thường, không có
đủ dữ liệu ngay
tại một điểm duy nhất trong một trang trại gió để thực hiện
đánh giá. Tuy nhiên, các bản ghi dữ liệu mở rộng có thể được tổng hợp bằng
phép ngoại suy dựa trên một hồ sơ
dài hạn cho vị trí khác. Các phương pháp MCP là phương tiện để tạo bản ghi mở rộng.
Giải thích sau đây được lấy từ "Dự báo tốc độ gió cực trị tại các vị trí
năng lượng gió, tập hợp chỉ dẫn chuẩn bị dưới dạng ETSU rút gọn
W/11/00427/00" bởi Phòng nghiên cứu công suất gió và khí hậu quốc gia của
Đại học East Anglia.
E.1 Đo lường so
sánh dự báo (MCP)
Phương pháp MCP lấy một số dạng mà
trong đó giai đoạn trung bình và hướng bản chất của các dữ liệu khác nhau. Một
phiên bản được mô tả ở đây, dựa
trên các dữ liệu hàng giờ đồng
thời từ vị trí tuabin gió và một trạm khí tượng chuẩn ở gần (Trạm Met.). Những dữ liệu
này có dạng biểu đồ cắt ngang và được sử dụng để dẫn xuất các công thức hồi quy
tuyến tính cung quét chọn lọc; các cung quét sẽ phù hợp với những vị trí được sử
dụng bởi trạm Met., các cung quét thường là 30o. Các bộ dữ liệu được
sử dụng để dẫn xuất các công thức hồi quy phải càng lâu càng tốt, ít nhất là bao
gồm hoàn toàn bộ phận bảo toàn của các biến động theo mùa bất kỳ.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các công thức hồi quy ở trên được áp dụng
cho trạm Met. lâu dài ghi sector theo cung quét, trong một thời gian đủ dài để loại
bỏ các biến động ngắn hạn, có lẽ ít nhất là 7 năm. Kết quả là một bản ghi trung
bình mỗi giờ cho vị trí, mà có thể được gia công trong một phân bố xác suất để
đánh giá vị trí.
E.3 Ứng dụng tốc
độ gió cực trị
Phương pháp kinh điển để dự báo tốc độ
gió cực trị là một phân
tích Gumbel được sửa đổi để cải thiện độ chính xác (ví dụ phương pháp ước lượng không chệch
tốt nhất Leiblein (BLUE) mô tả trong "Các nhà thiết kế hướng dẫn tải gió của
kết cấu tòa nhà", NJ
Cook, Butterworths, 1995.). Chiều dài dữ liệu tối thiểu được đề nghị thiết lập là
mười năm.
Cũng có thể áp dụng phương pháp các
cơn bão độc lập (MIS), một dẫn xuất của phương pháp Gumbel, trong đó sử dụng nhiều hơn
một điểm dữ liệu mỗi năm từ một bộ dữ liệu, cũng được mô tả bởi Cook. Phương pháp này có thể
được sử dụng cho các bộ dữ liệu mà có thời gian càng ngắn hơn bảy năm càng
tốt. Phương pháp MIS lựa chọn các đỉnh tốc độ gió của các cơn bão riêng bằng
cách áp dụng các ngưỡng và các bộ lọc thời gian để đảm bảo rằng tất cả các giá trị là
từ các sự kiện độc lập.
Các hệ số hồi quy cung quét cụ thể được
áp dụng cho một bảng tốc độ gió tối đa mỗi giờ tại trạm Met. Station, hàng năm
đối với Gumbel cơ bản và theo sự kiện bão cho phương pháp MIS, và theo cung
quét. Do đó, một bảng tương tự được xây dựng cho vị trí tuabin gió. Giá trị tối
đa mỗi năm đối với vị trí đề xuất được tách ra để sử dụng trong phân tích Gumbel.
Việc sử dụng các hệ số thích hợp ở đây
do chúng đã được hình thành từ dữ liệu trung bình hàng giờ và đang được áp dụng
cho dữ liệu trung bình mỗi giờ. Trong phương pháp này, không có giả thiết
rằng giá trị lớn nhất tại vị trí đề xuất xuất hiện trong cùng cung quét là tối
đa tại vị trí quy chuẩn. Bằng cách sử dụng các hệ số hồi quy cùng quét cụ thể,
tối đa tại vị trí đề xuất có thể được xác định chính xác hơn, có tính đến các mối
quan hệ bên trong vị trí.
Lựa chọn tần suất xuất hiện liên quan
trong phân tích giá trị cực
trị phải tính đến số các sự kiện mỗi năm.
Các hệ số gió giật được ước lượng từ dữ
liệu đo lường tại chỗ, hoặc bằng các phương pháp lý thuyết.
E.4 Tài liệu
tham khảo
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
National Wind Power and Climatic
Research Unit of the University of East Anglia, Predictionof extreme wind
speed at wind energy sites, a set of guidelines prepared under ETSUcontract
W/11/00427/00. (Dự báo tốc độ gió cực trị tại các vị trí năng lượng gió)
R I Harris, Gumbel re-visited - a
new look at extreme value statistics applied to wind speeds, Journal of
Wind Engineering and Industrial Aerodynamics, Volume 59 (1996) pp 1-22, (Tái thăm quan
Gumbel-một cái nhìn mới về các thống kê giá trị
cực trị áp dụng cho
các tốc độ gió)
D C Quarton Wind Farms in Hostile
Terrain, Final Report, A report prepared under ETSU contract
W/43/00501/00/00,, July 1999.(Các trang trại gió ở Hostile Terrain, báo cáo
sau cùng)
R I Harris, The accuracy of design
values predicted from extreme value analysis, Journal of Wind Engineering
and Industrial Aerodynamics, 89 (2001) pp 153-164. (Độ chính xác của các giá
trị thiết kế được dự báo từ phân tích giá trị cực trị)
Phụ
lục F
(tham
khảo)
Ngoại suy thống kê các tải đối với phân tích
sức bền giới hạn
F.1 Quy định
chung
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Đối với các tuabin gió, tải phụ thuộc
vào dòng gió luồng xoáy đối với sự đa dạng các điều kiện gió. Vì vậy, cần thiết
để phân tích các giá tri cực trị của tải trên cơ sở thống kê để xác định
tải đặc trưng
phù hợp.
Đối với một điều kiện gió nhất định,
có thể hợp lý cho mô hình đáp ứng tải ngắn hạn như một quá trình dừng ngẫu
nhiên. Cho rằng các tải có thể được biểu diễn theo các quá trình, các phương
pháp được mô tả trong những điều sau đây để tách riêng dữ liệu để ngoại suy và
ngoại suy tải. Tiêu chuẩn hội tụ cũng được đề xuất và một thay thế cho ước lượng
các tải dài hạn khi sử dụng phương pháp nghịch đảo độ tin cậy bậc nhất (IFORM) được
đưa ra.
Các phương pháp đã được thử nghiệm cho
tuabin hướng gió trục ngang 3 cánh. Chú ý đặc biệt có thể cần thiết cho
các khái niệm tuabin gió khác và/hoặc các sơ đồ điều khiển bao gồm phản hồi tải.
Thông tin chi tiết
và hướng dẫn có thể được tìm thấy
trong [1]26.
F.2 Tách riêng dữ
liệu cho phép ngoại suy
Dữ liệu được sử dụng trong phương pháp
ngoại suy được tách ra từ chuỗi thời gian mô phỏng tuabin trên phạm vi hoạt động
của tuabin trong các điều kiện gió quy định. Dữ liệu có thể được tách bằng cách
chọn các cực trị đáp ứng riêng trên toàn bộ từ mỗi mô phỏng hoặc một số tập hợp
con được tạo ra bằng cách phá vỡ mô phỏng bên trong các khối đẳng thời hoặc đảm
bảo thời gian tối thiểu tách biệt giữa các cực trị.
Thiết lập độc lập giữa các cực trị đáp
ứng tải riêng là quan trọng đối với một số phương pháp ngoại suy. Khi tách ra,
nhà thiết kế phải xem xét các hiệu ứng độc lập giữa các đỉnh trên phép
ngoại suy và
giảm
thiểu sự phụ thuộc khi có thể. Nếu phương pháp được lựa chọn cho phép ngoại suy
nhạy cảm theo giả thiết độc lập
(ví dụ như phương pháp liên quan đến chuyển đổi hàm xác suất giữa các cơ
số thời gian), nhà thiết kế phải cố gắng thống kê thử nghiệm cho độc lập.
Một tiếp cận đơn giản để đảm bảo độc lập
là giả thiết rằng giá trị cực
trị tổng thể trong mỗi mô phỏng 10 min hoặc
các cực trị cục bộ từ các khoảng thời gian không ngắn hơn ba chu kỳ đáp ứng độc
lập và
do
đó đòi hỏi một
tách biệt thời gian tối thiểu giữa các cực trị đáp ứng riêng của ba chu kỳ đáp ứng (được xác định
bởi ba đường giao nhau trung bình trên kích thước khối). Nếu một tiếp cận thống kê có hệ thống được
mong đợi, nhà thiết kế có thể thử nghiệm đối với các kỹ thuật ước lượng tiêu
chuẩn sử
dụng
độc lập (ví dụ: [5], [6]) và sau đó giảm
thiểu sự phụ thuộc một cách có kiểm soát.
Các phương pháp đỉnh vượt ngưỡng cũng
có thể được áp dụng, nhưng nhà thiết kế phải cẩn thận với các lỗi làm tròn và
tương quan được đưa ra bởi ngưỡng không ảnh hưởng đến hình dáng của đột biến phân bố thực
nghiệm.
F.3 Các phương pháp ngoại
suy tải
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Cách tiếp cận được đề xuất của ngoại
suy các sự kiện cực trị để xác định theo tải 50 năm của một tuabin gió có thể được chia ra
thành các quy trình sau:
a) Điều chỉnh tham số và tổng hợp sau
đó
Chia nhỏ giới hạn làm việc của tuabin
theo tốc độ gió rời rạc và tính năng của các mô phỏng miền thời gian tại mức luồng
xoáy bình thường (NTM). Ước lượng phân bố giá trị cực trị (tham số) [2] cho mỗi
thực hiện tốc độ gió. Tổng hợp tất cả các phân bố theo hàm phân bố dài hạn của
tốc độ gió trung bình. Dự báo giá trị 50 năm của hàm phân bố được tổng hợp. Đối với
cực trị tổng thể từ các mô phỏng 10 min, xác suất tải 50 năm là 3,8 x 10-7.
b) Tổng hợp dữ liệu đầu tiên và điều
chỉnh sau đó
Chia nhỏ giới hạn làm việc của tuabin
theo tốc độ gió rời rạc và tính năng của các mô phỏng miền thời gian tại mức luồng
xoáy bình thường (NTM). Tổng hợp tất cả các cực trị liên quan từ tất cả các chuỗi thời
gian theo hàm phân bố dài hạn của tốc độ gió trung bình trong phạm vi làm việc
của tuabin. Ước lượng một hàm phân bố (tổng hợp) cho tất cả các cực trị.
Dự báo giá trị 50 năm từ hàm phân
bố kết quả.
Hai trường hợp khác nhau được lưu ý đối
với việc tổng hợp các phân bố ngắn hạn được mô phỏng của các cực trị trong thời
gian quan sát cụ thể T bên trong một phân bố thực nghiệm của các cực trị lâu
dài cùng kỳ: ngoại suy từ các cực trị tổng thể, và từ các cực trị cục bộ.
F.3.2 Các cực trị tổng thể
Phân bố ngắn hạn của các cực trị tổng
thể trong thời gian quan sát T, được biểu diễn
Fshort - term(s|V;T)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong đó s viết tắt cho đáp ứng tải. Từ
công thức này, và bằng cách sử dụng phân bố lâu dài cho tốc độ gió trung bình,
phân bố lâu dài của các giá trị cực trị được thu nhận:
(F.2)
Đáp ứng tải cực trị, sr của thời gian
phản hồi mong muốn Tr được thu nhận từ công thức sau
(F.3)
Việc thực hiện thực tế của các công thức
này sẽ điển hình để sử dụng
các giá trị tốc độ gió rời rạc. Sau đó, có
(F.4)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(F.5)
Trong đó ski ký hiệu mẫu
giá trị cực trị thứ i từ tốc độ gió k và ri là bậc của ski
giữa các cực trị nk phát sinh từ tốc độ gió k. Đối với các triển khai
tiếp theo, cần lưu ý rằng một biểu thức tương đương cho phân bố thực
nghiệm bằng cách sử dụng tổng là
(F.6)
Trong đó hàm chỉ thị l(x) được biểu diễn
là:
(F.7)
Nhiệm vụ của hàm chỉ thị là để chọn ra
tất cả các giá trị nhỏ hơn hoặc bằng ski để chúng có thể đóng góp
vào xác suất thực nghiệm có giá trị nhỏ hơn hoặc bằng ski. Lưu ý rằng
định nghĩa cụ thể của
hàm chỉ thị đảm bảo
rằng trường hợp các giá trị cực trị nhận biết phải thực sự được ghi nhận.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Bây giờ việc phân bố cực trị tổng thể
ngắn hạn trong thời gian quan sát T, được thu nhận từ n(V) các giá trị cực trị
cục bộ riêng trong giai đoạn đó (giả thiết các cực trị là dương, nếu không có
thể thực hiện thay đổi dấu hiệu):
Fshort
-term (s|V;T) = Flocal (s|V;T)n(V)
(F.8)
Phân bố lâu dài, được quy định trong
(F.9), và đáp ứng tải cực trị, sr, của giai đoạn hồi tiếp
mong muốn, Tr, được thiết lập như đã mô tả trong điều phụ trước.
Đúng ra, n phải là một số ngẫu nhiên đối với mỗi phân bố phải được giả định (phụ
thuộc vào V). Tuy nhiên, đối với các ứng dụng tuabin gió, n hạn chế biến
động so với giá trị trung bình của nó. Do đó, thay thế n theo giá trị trung
bình của nó (điều kiện về V), như ngầm thực hiện ở trên, là tương đối chính
xác. Xấp xỉ có thể được chấp nhận nếu, khi áp dụng công thức được đề xuất ở sau đây,
mỗi lần sử dụng một đại diện giá trị s của tốc độ gió mà đóng góp nhiều nhất
vào đáp ứng tải cụ thể đang
xem xét. Dựa trên một xấp xỉ có các biểu thức sau:
(F.9)
(F.10)
F.3.4 Các phân bố thực nghiệm
lâu dài
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nsims
(Vk) ≈ Ntotal pk, pk
= f(Vk)∆Vk, Vin ≤ V1 < … < VM
< Vout
(F.11)
Sau khi mô phỏng hoàn thành và cực đại
được lấy ra, tất cả các cực đại từ tất cả các tốc độ gió được kết hợp thành một
phân bố duy nhất và phân bậc như
(F.12)
Trong đó si ký hiệu là
giá trị cực trị thứ i lấy mẫu trên tất cả các tốc độ gió và ri là bậc của si
trong ntotal các cực trị
phát sinh từ phân bố kết hợp.
Một bất lợi tiềm ẩn của phương pháp
này là các tải bị khống chế bởi
các tốc độ gió cao có thể có rất ít mô phỏng, mà từ đó tách ra các giá trị cực
trị ở cuối phân bố thực nghiệm. Để giải quyết vấn đề này, các phân bố lâu dài bổ
sung có thể được tính toán bằng cách sử dụng các mô phỏng bổ sung cho các
khoang tốc độ gió xác suất thấp. Tổng thời
gian mô phỏng mỗi khoang phải theo phân bố tốc độ gió ban đầu. Nhưng, một số
phân bố thực nghiệm lâu dài mới có thể được hình thành bằng cách sử dụng dữ liệu
mồi khởi động ngẫu
nhiên từ tất cả các khoang, trong đó một số lượng lớn các mô phỏng có sẵn. Sau
một số phân bố lâu dài được hình thành, chúng có thể được tính trung bình để tạo
thành một phân bố lâu dài tổng hợp duy nhất mà có thể được sử dụng để ngoại suy
đến các mức xác suất thấp hơn.
F.4 Tiêu chuẩn hội
tụ
F.4.1 Quy định
chung
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Ngoài một số tối thiểu các mô phỏng
đối với các tốc độ gió (Vrated - 2 m/s) để ngắt mạch, một tiêu chuẩn
hội tụ bổ sung cũng sẽ được áp dụng theo 7.6.2. Số các mô phỏng đề nghị được
xác định bằng cách tính toán khoảng
tin cậy cho phân bố thực nghiệm kết quả. Số các mô phỏng được cho là đủ mà đối với
chiều rộng khoảng tin cậy 90 % trên 84 % phân vị phân bố tải thực nghiệm của cực
đại tổng thể nhỏ hơn 15 % ước
lượng của 84 % điểm phân vị. Khoảng thời gian này có thể được ước lượng bằng cách
sử dụng các phương pháp khởi động [3], phương pháp ước lượng nhị thức [4], hoặc
nó có thể được ước lượng kế
thừa như một phần
của phương pháp ngoại suy được sử dụng.
Nếu các cực trị được thu nhận bằng
cách sử dụng phương pháp bất kỳ khác (như cực đại khối) mà dẫn đến các cực trị
m trên mô phỏng 10 min, tính trung bình,
sau đó là 84 % điểm phân vị ở trên cần phải được thay thế bằng
p*, trong đó
(F.13)
Tiêu chuẩn hội tụ phải được áp dụng
riêng cho mỗi phân bố tải ngắn hạn cho dù phân bố lâu dài sẽ phải được thiết lập
bằng cách sử dụng tổng hợp dữ liệu tốc độ gió trước khi điều chỉnh hay các phân
bố tham số điều chỉnh cho dữ liệu từ mỗi tốc độ gió được thực hiện trước khi tổng
hợp.
Trong quy trình có liên quan đến tổng
hợp trước khi điều chỉnh, phân bố thực nghiệm lâu dài cho các tải kéo theo tổng
hợp tất cả các khoang tốc độ gió có thể được thiết lập bằng cách sắp xếp sử dụng
tiêu chuẩn hội tụ tương tự như được đề xuất ở trên cho các phân bố ngắn hạn. Điểm
phân vị thích hợp mà tại đó áp đặt tiêu chuẩn hội tụ phải cao hơn điểm phân vị tương ứng với
bất kỳ biểu hiện "điểm uốn" (thường quan sát được) trong phân bố thực
nghiệm lâu dài để đảm bảo độ hội tụ đó được kiểm tra gần với cuối của phân bố
thực nghiệm này.
F.4.2 Ước lượng điểm phân vị
tải
Điểm phân vị tải được
mong đợi, , tương ứng với một xác suất không vượt
quá p, được ước lượng như sau:
Thứ bậc tất cả các dữ liệu
tải như S1 ≤ S2≤ ... ≤ SM
nếu có m giá trị như vậy từ các mô phỏng. Chú ý rằng m sẽ bằng với số
các mô phỏng nếu sử dụng cực đại toàn bộ.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(F.14)
Một số các cực trị đủ lớn, m, phải có
sẵn (đối với mỗi số các mô phỏng đủ lớn sẽ phải được thực hiện) để cho các kết
quả không bằng nhau ở trên và một giá trị i tìm được.
Sau đó, ước lượng điểm phân vị tải được
tính toán (tuyến tính) nội suy
như sau:
; trong đó 2
≤ i ≤ m
(F.15)
F.4.3 Ranh giới
tin cậy
Các ranh giới tin cậy được ước lượng tới
90 % khoảng tin cậy trên 84 %
điểm phân vị, như sau:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Khoảng thời gian biểu diễn khoảng thời gian tin cậy 90
% mong đợi.
F.4.4 Khoảng tin cậy
dựa trên mỗi khởi động
Sử dụng quy trình mồi khởi động để tạo
các khoảng tin cậy, [3] và [7], bắt đầu với thiết lập ban đầu của dữ liệu trên
cực đại tổng thể (m1, m2,
m3, m4, m5 ... mp) và một tái
lấy mẫu cho mồi
khởi động có
cùng kích thước như mẫu ban đầu. Lưu ý rằng các mẫu lấy lại để mồi khởi động sẽ gồm
các giá trị lặp lại từ mẫu ban đầu, đối với mỗi lần lấy mẫu lại, vì dữ liệu được
lấy mẫu ngẫu nhiên thay thế. Quá trình được lặp lại để hình thành một số lượng lớn
các mẫu lấy lại cho mồi khởi động,
Nb. Từ mỗi bộ dữ liệu
p, ước lượng riêng của 84 % điểm phân vị có thể đạt được. Từ các ước lượng Nb
này, tạo thành tập hợp (l1, l2, I3, I4,
I5…lNb), các khoảng
tin cậy có thể được tìm thấy theo
cách thông thường bằng cách sắp xếp dữ liệu. Sau đó các dữ liệu này có thể được
sử dụng cho các tử số của công thức (F.16). Ước lượng của 84 % điểm phân vị mà
được thu nhận từ dữ liệu ban đầu biểu diễn cho mẫu số của công thức (F.16).
Số mẫu lấy lại để mồi khởi động tối
thiểu là 25 có thể là đủ để xác định một ước lượng hợp lý cho các ranh giới độ
tin cậy. Tuy nhiên, một số lượng lớn gần 5 000 sẽ dẫn đến nhiều ước lượng có thể tin
cậy.
F.4.5 Khoảng tin cậy
dựa trên phân bổ nhị thức
Khoảng tin cậy dựa trên phân bố nhị thức ([7])
là tính toán ít
chuyên sâu hơn so với những tính toán bằng cách sử dụng quy trình mồi khởi động.
Việc tiết giản này được
đơn giản hóa bằng cách lập bảng các tham số để tính toán khoảng tin cậy nhị thức mà sẽ cho kết
quả đối với các tình huống phổ biến nhất. Đối với điểm phân vị tải bằng 0,84 và
khoảng tin cậy 90 %, Bảng F.1 cung cấp các giá trị k* và I* cũng như hai giá trị
khác, A và B, cần thiết cho phép nội suy các ranh giới tin cậy ước lượng trong
công thức (F.17) dưới đây. Số các mô phỏng có thứ tự từ 15 đến 35 cho mỗi
khoang tốc độ gió.
Bảng F.1 -
Các tham số cần thiết để thiết lập các khoảng tin cậy theo phương
pháp nhị phân
Đối với khoảng
tin cậy 90 % trên tải 84 %
Số các
mô phỏng
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
I*
A
B
15
9
14
0,50
0,32
16
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
15
0,27
0,19
17
11
16
0,10
0,03
18
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
16
0,87
0,96
19
12
17
0,58
0,90
20
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
18
0,35
0,83
21
14
19
0,16
0,76
22
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
20
1,00
0,69
23
15
21
0,69
0,60
24
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
22
0,45
0,50
25
17
23
0,25
0,39
26
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
24
0,28
0,26
27
18
25
0,85
0,12
28
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
25
0,58
0,98
29
20
26
0,36
0,91
30
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
27
0,18
0,83
31
22
28
0,02
0,75
32
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
29
0,75
0,66
33
23
30
0,51
0,56
34
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
31
0,31
0,44
35
25
32
0,13
0,32
Các tham số trong Bảng F.1 được sử dụng
với một công thức thiết kế mà được điều chỉnh để cho khoảng tin cậy 90 % đối với
tối đa 10 min tải 84 %. Công thức thiết kế có thể được viết như sau:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(F.17)
Trong đó I*, k*, A, và B
được đưa ra trong Bảng F.1 như một hàm của số các mô phỏng hoạt động và xl*, x(l+1)*, xk*, và x(k+1)* được thu nhận
từ các cực trị được mô phỏng theo bậc thứ tự. Sau đó, ước lượng này có thể được đưa vào
Công thức (F.16) để xác định nếu phù hợp tiêu chuẩn hội tụ, trong đó
(F.18)
F.5 Phương pháp
nghịch đảo bậc nhất độ tin cậy (IFORM)
Một thay thế cho các phương pháp ngoại
suy tải điển hình là việc sử dụng IFORM để ước lượng các tải lâu dài. Trong
phương pháp này, các mô phỏng đáp ứng tuabin gió và luồng xoáy được thực hiện với
các điều kiện NTM. Có ít nhất 15 mô
phỏng được thực hiện đối với các tốc độ gió (Vrated - 2 m/s) cho
chế độ ngắt mạch. Các tốc độ gió mà sau đó có lợi cho việc xác định tải cao nhất.
Phép ngoại suy các phân bố tải ngắn hạn theo một mức xác suất phù hợp với sự
xác định thời gian quay vòng 50 năm đem đến tải 50 năm để sử dụng với
DLC 1.1.
Tiêu chuẩn hội tụ cho IFORM phải giống
như đối với các phương pháp ngoại suy khác, ngoại trừ khi nhà thiết kế chỉ cần ước lượng
khoảng tin cậy cho các phân bố tải từ các tốc độ gió quan trọng xác định (thường
chỉ có một).
Lý thuyết cho việc sử dụng kỹ thuật dạng
nghịch đảo (IFORM) (dựa vào biến đổi các biến vật lý ngẫu nhiên theo các biến
ngẫu nhiên tiêu chuẩn bình thường [8]) được minh chứng rõ ràng bằng tài liệu,
xem ví dụ [9], và có thể được áp dụng để ước lượng tải tuabin gió lâu dài trong
điều kiện NTM.
Để thực hiện kỹ thuật IFORM cho các tải tuabin
gió cực trị, sử dụng các bước sau đây.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
b) Xác định cho mỗi khoang đem lại tải
lớn nhất tối đa.
c) Hoàn thiện tìm kiếm bằng
cách thực hiện 15 mô phỏng khác cho các khoang được xác định trong bước b). Một
lần nữa, xác định
các tốc độ gió thiết kế vượt trội, v*, mà sinh ra các tải lớn nhất. Đảm bảo rằng các số mô
phỏng tại các tốc độ gió quan trọng là đủ để chiều rộng 90 % khoảng tin cậy
trên 84 % điểm phân vị phân bố tải thực nghiệm của cực đại tổng thể nhỏ hơn 15 % ước
lượng của 84 % điểm phân vị.
d) Chỉ thực hiện phân tích ngắn hạn
cho các khoang được xác định trong bước c). Điểm phân vị mong đợi của phân bố tải đối với
khoang này được dẫn xuất và phụ thuộc vào mức xác suất đích.
Sử dụng Rayleigh CDF, tính toán U1 = Φ-1[Fv(v*)]
Đối với xác suất vượt quá trong 10 min
một lần trong 50 năm, pT = 3,8.10-7. Giá trị này
tương ứng với β= 4,95
Giải ra ta có:
Suy ra điểm phân vị tải PS
= Φ(U2), xem Bảng F.2.
Tải lâu dài có điểm phân vị PS
của phân bố ngắn hạn cho khoang tốc độ gió, v*. Để đạt được điểm phân vị thích hợp,
có thể yêu cầu phép ngoại suy.
Bảng F.2 -
Các xác suất vượt quá tải ngắn hạn như một hàm của tốc độ gió ở
chiều cao của hub đối với các cấp tuabin gió khác
để sử dụng với quy trình IFORM
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
1 - PS,
cấp 1
1 - PS,
cấp 2
1 - PS,
cấp 3
5
5,77E-07
4,74E-07
4,16E-07
6
3,85E-07
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3,73E-07
7
3,87E-07
4,14E-07
4,55E-07
8
5,13E-07
5,93E-07
7,02E-07
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
8,50E-07
1,05E-06
1,33E-06
10
1,71E-06
2,25E-06
3,03E-06
11
4,14E-06
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
8,24E-06
12
4,83E-07
4,14E-07
3,81E-07
13
3,71E-07
3,80E-07
4,07E-07
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
4,52E-07
5,22E-07
6,22E-07
15
7,66E-07
9,73E-07
1,27E-06
16
1,71E-06
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3,37E-06
17
4,93E-06
7,41E-06
1,14E-05
18
1,81E-05
2,95E-05
4,93E-05
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
4,32E-07
3,85E-07
3,71E-07
20
3,81E-07
4,14E-07
4,73E-07
21
5,64E-07
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
9,10E-07
22
1,23E-06
1,71E-06
2,48E-06
23
3,72E-06
5,79E-06
9,31E-06
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
1,55E-05
2,67E-05
4,76E-05
25
8,80E-05
1,68E-04
3,34E-04
F.6 Tài liệu
tham khảo
[1] Wind Energy, Vol. 11, Number 6,
November-December 2008, Special Issue on Design Load Definition (Số đặc biệt về
định nghĩa tải thiết kế)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[3] EFRON, B. and TIBSHIRANI, R. J., (1993) “An
Introduction to the Bootstrap”, Chapmanand Hall, New York. (Giới
thiệu về sự mồi khởi động)
[4] HOGG, R. V. and CRAIG, A. T., (1995)
“Introduction to Mathematical Statistics”, 5th Ed.,Prentice Hall, Englewood Cliffs, New Jersey.
(Giới thiệu về Toán học thống kê)
[5] HOEFFDING, W., (1948) “A
Non-Parametric Test of Independence,” The Annals of Mathematical Statistics, Vol.
19, No. 4, pp. 546-557. (Thử nghiệm phi tham số độc lập, lịch sử toán học thống
kê)
[6] BLUM, J.R., KIEFER, J. and ROSENBLATT,
M., (1961) “Distribution
Free Tests of Independence based on the Sample Distribution Function,” The
Annals of Mathematical Statistics, Vol. 32, No. 2, pp. 485-498. (Các thử
nghiệm phân bố tự do độc lập dựa trên hàm phân bố lấy mẫu, lịch sử toán học thống kê)
[7] FOGLE, J. AGARWAL, P. and MANUEL,
L. (2008) “Towards an Improved Understanding of Statistical Extrapolation for
Wind Turbine Extreme Loads,” (Hướng tới hiểu biết cải thiện phép ngoại suy thống kê
cho các tải cực trị tuabin gió)
[8] ROSENBLATT, M. (1952). “Remarks on
a Multivariate Transformation”, Ann. Math. Stat.,Vol. 23, pp. 470-472. (Nhận xét về biến
đổi đa biến)
[9] SARANYASOONTORN, K. and MANUEL,
L., “Design Loads for Wind Turbines using the Environmental Contour Method,” Journal
of Solar Energy Engineering including Wind Energy and Building Energy
Conservation, Transactions of the ASME, Vol. 128, No.
4,
pp.
554-561, November 2006. (Các tải thiết kế đối với các tuabin gió sử dụng phương
pháp môi trường đồng mức)
Phụ
lục G
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Phân tích mỏi sử dụng quy tắc Miner có ngoại
suy tải
G.1 Phân tích mỏi
Sự cố mỏi do một quá trình tích lũy
thiệt hại do biến động các tải. Đối với loại quan sát độ mỏi bằng mắt thường
này, có sự chấp thuận chung về một gia số thiệt hại do mỗi chu kỳ trễ được hiển
thị trong biểu đồ ứng suất biến dạng cục bộ. Do đó, mỗi giá trị cực đại của
biểu đồ gia tốc tải cục bộ được liên kết với giá trị tối thiểu cục bộ để hoàn
thành một chu kỳ đầy đủ (đếm chu
kỳ dòng nước mưa, xem Matsuishi & Endo, năm 1968, hoặc Dowling, 1972). Mỗi
chu kỳ này được đặc trưng bởi các giá trị cực trị kết hợp (hoặc tương đương theo
phạm vi và các giá trị điểm giữa, nghĩa là sự khác biệt giữa và trung bình của
hai cực trị chu kỳ được kết hợp). Nếu thiệt hại tích tụ tuyến tính và độc lập
cho mỗi chu kỳ (Palmgren, năm 1924, và Miner, 1945) thì tổng thiệt hại D, sẽ được
đưa ra theo27:
(G.1)
Trong đó: Si là phạm vi tải
cho chu kỳ thứ i và N (.) là số chu kỳ có sự cố đối với một tải độ lớn không đổi
có phạm vi nhất định theo đối số (tức là đường cong SN). Trong biểu thức này,
giả định thêm rằng ứng suất cục bộ ở vị trí sự cố là tuyến tính liên quan đến tải.
Thông thường, để phân tích độ mỏi, đường cong SN được chọn để thiết kế kết hợp
với một xác suất tồn tại nhất định(thường là 95 %) và độ tin cậy (thường là 95 %)
khi xác định đường cong từ số liệu vật liệu. Như vậy, mức mong muốn tối thiểu của
độ tin cậy có thể được kỳ vọng khi thiệt hại tổng cộng theo một đơn vị.
Trong tuổi thọ của một tuabin gió, sẽ
có nhiều chu kỳ có các kích thước khác nhau do một phạm vi rộng của các điều kiện
gió. Vì vậy, với các mục đích thiết kế, phải ước lượng một phổ tải. Các chu kỳ
lớn nhất đối với phổ này sẽ được ước lượng từ một điều chỉnh trơn tru với dữ liệu
thu được từ các mô phỏng hoặc thử nghiệm theo khoảng thời gian mà ngắn hơn
đáng kể so với tuổi thọ tuabin. Đối với mỗi điều kiện gió, có thể giả thiết rằng tải
được mô hình hóa theo một quá trình dừng ngẫu nhiên. Do đó, thiệt hại dự kiến đối
với một tốc độ gió V nhất định và trong một khoảng thời gian T cụ thể sẽ được đưa
ra bởi
,
(G.2)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Thiệt hại dự kiến từ các tải vận hành bình
thường đối với cả tuổi thọ của tuabin sau đó được đưa ra bằng cách mở rộng khoảng thời gian
theo thời gian cả tuổi thọ và tích phân trên phạm vi các tốc độ gió vận hành,
sao cho
(G.3)
Trong đó: p(V) là hàm mật độ xác suất đối
với tốc độ gió tại chiều cao của hub được quy định cho các cấp tuabin gió tiêu
chuẩn trong 6.3.1.1.
Bây giờ, xác định phổ tải lâu dài
(G.4)
Sau đó, đưa ra
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong nhiều trường hợp, với các mục
đích thực tế, thuận tiện để chia các phạm vi tải và các giá trị tốc độ gió vào
các khoang tách rời. Trong trường hợp này, thiệt hại dự kiến có thể được xấp xỉ
bằng
(G.6)
Trong đón j,k là số các chu
kỳ tải tuổi thọ ở tốc độ gió thứ j và các khoang tải thứ k, và Sk là
giá trị trung
tâm đối với khoảng tải thứ k. Do vậy, từ định nghĩa trên,
(G.7)
Trong đó ∆Vj là chiều rộng
của khoang tốc độ gió thứ j và ∆Sk là chiều rộng của khoang tải thứ k.
Bằng cách sử dụng những kết quả này,
và xem xét các yêu cầu từ 7.6.3 về các hệ số an toàn được áp dụng cho tải, mối
quan hệ giới hạn quy định để phân tích độ mỏi trở thành
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong đó γ = γf.γm.γn là sản phẩm của cả ba hệ
số an toàn từng phần cho tải, vật liệu và hậu quả sự cố tương ứng. Trong
điều kiện rời rạc, công thức này dẫn đến
(G.9)
Trong các trường hợp thiệt hại xảy ra
đáng kể trong nhiều trường hợp tải từ Bảng 2 các thành phần thiệt hại đối với tất cả các trường
hợp tải, được tính toán bằng cách sử dụng vế trái của công thức (G.9), phải tổng
cộng lại ít hơn hoặc bằng một.
Công thức đến thời điểm này đã bỏ qua ảnh hưởng
của biến động tại các mức trung điểm đối với mỗi chu kỳ tải. Một cách đơn giản
để đối phó với biến động này là để xác định các chu kỳ tải thiệt hại tương
đương với giá trị trung điểm cố định. Trong trường hợp này, thiệt hại được thực
hiện theo các chu kỳ tương đương là chính xác giống như đã được thực hiện bởi
các chu kỳ có các trung điểm khác nhau. Vì vậy, sự cố sẽ xảy ra (tính trung bình) đối với
cùng số chu kỳ độ lớn không đổi trong phạm vi chu kỳ tương đương, Seq
như đối với chu kỳ ở phạm vi chu kỳ nhất định và giá trị trung điểm bất kỳ. Do
đó, việc xác định một họ các đường cong SN đối với các giá trị trung điểm thay
đổi, N(S,M), công thức thiệt hại tương đương
N(Seq, M0) = N(S,M)
(G.10)
được giải cho các giá trị xác định Seq
đối với mỗi S, M và chọn mức trung điểm hằng số M0. Trong ngôn ngữ
toán học, điều này có thể được quy định
như sau
Seq = N-1(S,M),M0)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong đó, nghịch đảo nhắc đến giải
pháp cho đối số đầu tiên trong hàm số là N được đưa ra cho đối số thứ hai. Điển
hình, M0 được chọn để
cho các giá trị R (tỷ số tải tối đa trên tải tối thiểu) đối với các chu kỳ tải
tương đương mà ở giữa phạm vi các giá trị được quan sát trực tiếp trên dữ liệu
tải. Thông thường
giá trị được chấp nhận là tải trung bình đang xét trên tất cả tốc độ gió làm việc.
May là trong hầu hết
các trường hợp, các đường cong SN được định nghĩa theo phạm vi tải phân tích
chu kỳ tương đương (như định luật điện năng hoặc các dạng số mũ) được tính toán dễ
dàng. Tuy nhiên, phải quan tâm khi phạm vi trở lên lớn hơn. Tùy thuộc vào giá trị trung điểm,
giá trị tải tối đa hay tối thiểu đối với chu kỳ nhất định có thể thu được gần
với độ bền tĩnh, trong trường hợp này, không thể áp dụng đường cong SN
chu kỳ cao đơn giản. Ngoài ra,
đối với các giá trị phạm vi lớn hơn, ứng suất hoặc độ bền cục bộ có thể chuyển
đổi từ một trường hợp lực nén - lực nén hoặc lực căng - lực căng vượt trội
thành một trường hợp lực căng - lực nén, mà có thể có một biểu diễn đường cong
SN phân tích khác nhau.
Quan trọng là sử dụng quan hệ SN thích hợp trong việc xác định phạm vi chu kỳ
tương đương. Đối với một biểu đồ gia tốc tải nhất định, chu kỳ dòng mưa được
xác định đầu tiên. Sau đó, một tập hợp các chu kỳ điểm trung bình không đổi
tương đương được tính toán xem xét quan hệ SN thích hợp cho mỗi chu kỳ. Sau đó,
phân bố các chu kỳ tương đương được ước lượng cho một phổ tải tương đương ngắn
hạn mới. Sau đó, phổ mới này được sử dụng để xác định số các chu kỳ được sử dụng
cho phần thiệt hại đối với mỗi tải và khoang tốc độ gió. Ưu điểm chính của việc
sử dụng phương
pháp này là ước lượng phổ tương đương thống kê mạnh mẽ hơn cân đối các mức
trung điểm như một biến độc lập. Bởi vì, lợi thế này dẫn đến nhiều chu kỳ tải
được tính đến theo các chuỗi dữ liệu tải thời gian điển hình đối với mỗi tải
khoang tốc độ gió hơn là khi các
khoang trung điểm cũng được dõi theo riêng biệt.
Một vấn đề thực tế bên ngoài phát sinh
trong khi xác định phổ tải ngắn hạn là số lượng lớn các chu kỳ nhỏ được xác
định theo phương pháp dòng mưa. Các chu kỳ nhỏ này thường có thể xảy
ra tại các
điểm lân cận
theo thời gian và do đó có thể được
phối hợp. Các chu kỳ nhỏ cũng có thể làm biến dạng các xấp xỉ giải
tích theo phần cuối của phân bố. Do đó, đề xuất chỉ xem xét các
chu kỳ lớn hơn một ngưỡng khi xấp xỉ phần cuối của phân bố ngắn hạn. Một giá trị
ngưỡng của ít nhất
95 % các công việc tốt điển hình trong thực tế. Các giá trị ngưỡng thấp hơn
có thể thích hợp nếu các chu kỳ nhỏ đã được loại bỏ hoặc
nếu tăng số lượng các điểm dữ liệu được sử dụng cho quá trình điều chỉnh được dự kiến để mang lại độ
tin cậy thống kê bổ sung đáng kể.
Đối với các ứng dụng thiết kế tuabin
gió thực tế, cần phải ước lượng phổ tải tương đương ngắn hạn từ dữ liệu mô
phỏng động lực và sau đó tính toán thiệt hại tuổi thọ. Một phương pháp hoàn
thành nhiệm vụ này được đưa ra bởi quy trình sau đây:
a) chọn mức điểm trung bình chuẩn như
mức tải trung bình xét tất cả tốc độ gió;
b) từ dữ liệu mô phỏng đối với một tốc
độ gió nhất định, tách tuần tự cực đại và cực tiểu cục bộ. Các trình tự cực đại
và cực tiểu cục bộ từ nhiều chuỗi thời gian đối với các điều kiện gió tương tự
có thể được ghép nối vào một chuỗi duy nhất;
c) sử dụng phương pháp dòng mưa để xác
định trung điểm và phạm vi cho mỗi chu kỳ tải mô phỏng;
d) xác định phạm vi tương đương cho mỗi
chu kỳ tải liên quan đến mức trung điểm chuẩn đã chọn;
e) xác định một sự điều chỉnh giải
tích cho phân bố xác suất ngắn hạn của các chu kỳ tải tương đương, FST
(S|V,T) đối với dữ
liệu trên ngưỡng đã chọn. Chỉ dẫn đối với một phương pháp để điều chỉnh phân bố
có thể được tìm thấy trong Moriarty và Holley, 2003. Kiểu phân bố được lựa chọn
phải được kiểm tra để xem sự điều
chỉnh theo dữ liệu là chấp nhận được và liệu có đủ số liệu để ước lượng tin cậy
cho hoạt động phần cuối được so sánh với dữ liệu;
f) xác định số lượng chu kỳ tuổi thọ dự
kiến trong mỗi khoang bằng cách sử dụng dữ liệu khi khoang tải dưới ngưỡng và
phân bố tải được điều chỉnh khi khoang tải trên ngưỡng. Điều này dẫn đến
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong đó: mjk là số các chu
kỳ mỏi mô phỏng được
tính trong dữ liệu đối với khoang tốc độ gió thứ j và khoang tải thứ k dưới ngưỡng,
Mj là số các chu kỳ
mỏi được tính trong mô
phỏng trên ngưỡng, và là phần theo thời
gian của tốc độ gió trong khoang thứ j đối với phân bố tốc độ
gió Rayleigh được giả thiết.
1) Tổng hợp thiệt hại bằng cách sử dụng
vế trái của công thức (G.9).
2) Tổng hợp tổng thiệt hại tuổi thọ từ
tất cả các trường hợp tải mỏi.
Khi sử dụng quy trình này, phải cẩn thận
rằng
a) độ phân giải của các khoang phạm vi
tải và tốc độ gió là đủ cho độ chính xác số học mong đợi, và
b) Các giá trị của phạm vi tải đủ lớn
được sử dụng để đại diện đầy
đủ cho phần cuối phân bố tải dài lâu.
Vấn đề đầu tiên có thể được giải quyết
bằng cách xấp xỉ các lỗi theo một nửa sự khác biệt giữa các kết quả tính toán
theo hai độ phân giải của khoang khác nhau bỏ qua dữ liệu từ tất cả các tốc độ
gió hoặc phạm vi tải khác. Một cách khác sẽ được tính toán tổng thiệt hại bằng
cách sử dụng các điểm cuối đối với các giá trị khoang thay vì các giá trị
trung tâm để ràng buộc kết quả.
Vấn đề thứ hai có thể được giải quyết
bằng việc tăng liên tiếp giá trị khoang phạm vi tải cao nhất cho đến khi một sự
gia tăng đáng kể trong thiệt
hại tuổi thọ quan sát được. Chú ý vì tỷ số là
một số lớn, nên khoang tải được yêu cầu lớn nhất có thể đủ lớn hơn
chu kỳ lớn nhất được quan
sát trong dữ liệu mô phỏng. Do điều này dẫn đến tổng biểu đồ gia tốc tải được
mô phỏng nhỏ hơn nhiều tuổi thọ của
tuabin, và ngoại suy thống kế được yêu cầu để ước lượng chính xác thiệt
hại từ phần cuối phân bố tải lâu dài.
G.2 Tài liệu
tham khảo
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Matsuishi, M. and Endo, T., Fatigue
of Metals Subjected to Varying Stress, Proc. Japan Soc.of Mech. Engrs., n.
68-2, 1968, pp. 37-40. (Mỏi của các kim loại chịu ứng suất thay đổi)
Miner, M.A. Cumulative Damage in
Fatigue, J. of Applied Mech., v.12, 1945, pp. A159-A164. (Thiệt hại tích
lũy mỏi)
Moriarty, P. J. and Holley, W. E., Using
Probabilistic Models in Wind Turbine Design, Proc.lCASP9, San Francisco,
CA, July 6-9, 2003. (Sử dụng các mô hình xác suất trong thiết kế tuabin gió)
Palmgren, A. , Die Lebensdauer von
Kugellagem, Zeitschrift der Vereines Deutscheringenieure, v.
68, n. 14, 1924, pp. 339-341.
Phụ
lục H
(tham
khảo)
Các tải đồng thời
H.1 Quy định
chung
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Bảng H.1 - Ma
trận tải cực trị
Fx
Fy
Fz
Mx
My
Mz
FR
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
MR
θM
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhỏ nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhỏ nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhỏ nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhỏ nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhỏ nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lớn nhất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong bảng này, mỗi cột đại diện cho một
giá trị thành phần tải được mô tả bởi các tiêu đề cột. Mỗi hàng đại diện cho
các giá trị đồng thời (tức
là tất cả các giá trị xảy ra cùng một lúc) và các ô xám biểu diễn thành phần cụ thể mà có hoặc một
giá trị tối đa hoặc một giá trị tối thiểu như nêu ở cột bên trái. Các giá trị tối
đa và tối thiểu nhằm bao trùm phạm
vi đầy đủ các giá trị
đối với thành phần tải cụ thể. Sau đó, mô hình kết cấu chi tiết được thực hiện
bằng cách sử dụng mỗi hàng để xác định các giá trị ứng suất hoặc sức căng cục bộ
sinh ra, và được so sánh với tiêu chí hỏng hóc thích hợp. Khi độ cứng
và độ bền của kết cấu trong đáp ứng tải trên mặt phẳng tương tự theo các
hướng tải khác nhau, hầu hết tải cực trị có thể xảy ra khi cả hai thành
phần x và y có biên độ lớn nhưng không phải ở các giá trị rất lớn của chúng.
Như vậy, các giá trị vector hợp lực trong mặt phẳng cũng được hiển thị
trong các cột bổ sung ở bên phải và các hàng ở phía dưới. Các hợp lực
trong mặt phẳng này được xác định
là
(H.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(H.2)
Các giá trị trong bảng được xác định
bằng cách phân tích sau xử lý
chuỗi thời gian đối với sáu thành phần tải được xác định như các đầu ra từ mã mô
phỏng động lực học tuabin gió hoàn chỉnh. Trong phân tích này, chuỗi thời gian
được tìm kiếm cho
các giá trị tối đa và tối thiểu đối với mỗi thành phần cũng như cực đại cho các
hợp lực. Các giá trị đồng thời kết hợp với mỗi thời điểm tương ứng này sau đó
được đưa vào các hàng của
bảng. Mỗi trường hợp tải quy định tại điều 7 được phân tích theo cách này và
sau đó hầu hết tải cực trị trong mỗi hàng từ các trường hợp tải khác nhau được
sử dụng để xác định các tải tổng thể
bao phủ bộ phận đó của
tuabin gió.
Trong phần tiếp theo, đưa ra hai cách
tiếp cận. Lưu ý phải thực hiện thận trọng để thu được các tải bảo toàn đồng thời.
H.2 Chia tỷ lệ
Cách tiếp cận này bao gồm các bước
- Đối với mỗi mặt cắt và thành phần tải, một khoang
trường hợp tải được xét dẫn đến tải đặc trưng tối đa
- Một chuỗi thời gian từ
khoang này gần bằng với giá trị tối đa của nó trong khoảng ± 5 % tải đặc trưng
được chọn này.
- Giá trị tối đa của chuỗi thời gian
này được tỷ lệ theo tải đặc trưng. Sau đó các hệ số tỷ lệ thu được cũng được áp
dụng cho tất cả các thành phần tải đồng thời để giá trị này được chọn
tối đa theo chuỗi thời gian này.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
- Đối với các giá trị tối thiểu, quy
trình được áp dụng phù hợp.
H.3 Lấy trung
bình
Cách tiếp cận này bao gồm các bước
- Đối với một trường hợp tải gồm nhiều
hơn một thực hiện tải dương tới hạn được tính bằng trung bình tối đa của
mỗi thực hiện.
- Các tải đồng thời được tính theo trung bình
các giá trị đồng thời tuyệt đối của mỗi lần thực hiện. Dấu trên các tải đồng thời
được áp dụng phù hợp với dấu của các tải đồng thời của lần thực hiện với tải
cao nhất.
- Các tải âm tới hạn được tính theo trung
bình tối đa mỗi lần thực hiện. Các tải đồng thời được tính theo cùng cách như
trường hợp dương.
- Tải tới hạn tuyệt đối được lấy theo tối đa
các giá trị tuyệt đối của các trung bình tối đa và các trung bình tối thiểu các
tải được mô tà ở trên với các giá trị đồng thời tương ứng.
Thư mục tài
liệu tham khảo
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[1] TCVN 6627 (IEC 60034) (tất cả các phần),
Máy điện quay
[2] TCVN 7995 (IEC 60038), Điện áp
tiêu chuẩn
[3] IEC 60146 (all parts), Semiconductor
converters (Bộ chuyển đổi bán dẫn)
[4] IEC 60173:1964, Colours of the
cores of flexible cables and cords (màu sắc của lõi các cáp và dây
linh hoạt)
[5] TCVN 6610 (IEC 60227) (tất cả các
phần), Cáp cách điện bằng PVC có điện áp danh định đến và bằng
450/750V
[6] TCVN 9615 (IEC 60245) (tất cả các
phần), Cáp cách điện bằng cao su có điện áp danh định đến và bằng 450/750 V
[7] TCVN 5926 (IEC 60269) (tất cả các
phần), Cầu chảy hạ áp
[8] IEC 60287 (tất cả các phần), Electric
cables - Calculation of the current rating (Cáp điện - Tính toán thông số đặc trưng dòng điện)
[9] TCVN 7994 (IEC 60439) (tất cả các
phần), Tủ điện đóng cắt và điều khiển hạ áp
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[11] IEC 60529:1989, Degrees of
protection provided by enclosures (IP Code) (Cấp bảo vệ bằng vỏ ngoài)
[12] TCVN 7992 (IEC 60617), Ký hiệu
bằng hình vẽ trên sơ đồ
[13] IEC/TR 60755:2008, General
requirements for residual current operated protective devices (Yêu cầu chung đối
với các thiết bị bảo vệ tác động bằng dòng dư)
[14] TCVN 6434 (IEC 60898), Khí cụ
điện - Áptômát bảo vệ quá dòng dùng trong gia đình và các hệ thống lắp
đặt tương tự
[15] IEC 61310-1:2007, Safety of
machinery - Indication, marking and actuation - Part 1:
Requirements for visual, acoustic and tactile signals (An toàn máy - Chỉ thị,
ghi nhãn và vận hành
- Phần 1: Yêu cầu đối với các tín hiệu hình ảnh, âm
thanh và tiếp xúc)
[16] IEC 61310-2:2007, Safety of
machinery - Indication, marking and actuation - Part 2: Requirements for
marking (An toàn máy - Chỉ thị, ghi nhãn và vận hành
- Phần 2: Yêu cầu đối với ghi nhãn)
[17] ISO 3010:2001, Basis for
design of structures - Seismic actions on structures (Cơ sở thiết kế các kết cấu - Hoạt
động địa chấn trên kết cấu)
[18] ISO 8930:1987, General
principles on reliability for structures - List of equivalent terms (Nguyên tắc
chung về độ tin cậy đối với các kết cấu - Liệt kê các thuật
ngữ tương đương)
[19] TCVN ISO 9001, Hệ thống quản
lý chất lượng - Các
yêu cầu)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
MỤC LỤC
Lời nói đầu
Lời giới thiệu
1 Phạm vi áp dụng
2 Tài liệu viện
dẫn
3 Thuật ngữ và
định nghĩa
4 Ký hiệu và
các từ viết tắt
5 Các yếu tố
chính
6 Điều kiện bên
ngoài
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
8 Hệ thống điều
khiển và bảo vệ
9 Hệ thống cơ khí
10 Hệ thống điện
11 Đánh giá
tuabin gió đối với các điều kiện vị trí cụ thể
12 Lắp ráp, lắp đặt và lắp
dựng
13 Vận hành thử,
vận hành và bảo trì
Phụ lục A (quy định) - Các tham số thiết
kế để mô tả tuabin gió cấp S
Phụ lục B (tham khảo) - Các mô hình luồng xoáy
Phụ lục C (tham khảo) - Đánh giá tải động
đất
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Phụ lục E (tham khảo) - Dự báo phân bố
gió đối với các vị trí tuabin gió bằng các phương pháp đo lường so
sánh dự báo (MCP)
Phụ lục F (tham khảo) - Ngoại suy thống
kê các tải đối với phân tích sức bền giới hạn
Phụ lục G (tham khảo) - Phân tích mỏi sử dụng
quy tắc Miner có ngoại suy tải
Phụ lục H (tham khảo) - Các tải đồng
thời
Thư mục tài liệu tham khảo
1 Tốc độ gió trung bình hàng năm không
xuất hiện trong Bảng 1 như một tham số cơ bản đối với các cấp tuabin gió nữa. Tốc
độ gió trung bình hàng năm đối với các thiết kế tuabin gió theo các cấp này được cho trong công thức 9.
2 Lưu ý trong tiêu chuẩn này, Iref là giá trị trung bình mà không phải giá trị đại diện.
3 Các giá trị thực có thể phụ thuộc vào việc lựa chọn mô hình luồng
xoáy và các yêu cầu trong b).
4 Nếu mong muốn các
phân bố khác đối với các tính toán tải tùy chọn bổ sung, thì chúng có thể được lấy xấp xỉ với các
cấp tiêu chuẩn bằng
cách giả định phân bố loga chuẩn và
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
5 Độ lệch chuẩn của luồng xoáy đối với
mô hình gió cực trị luồng xoáy không liên quan đến mô hình luồng xoáy thông thường (NTM) hoặc
mô hình luồng xoáy cực trị (ETM). Mô hình gió cực trị
ổn định có liên quan đến mô hình gió cực trị luồng xoáy theo hệ số
đỉnh xấp xỉ 3,5.
6 Độ lớn gió giật được hiệu chuẩn cùng với xác suất của sự kiện hoạt động
ví dụ như bắt đầu và kết thúc để có tần suất xuất hiện 50 năm.
7 Sáu giờ vận hành được coi là tương
đương với khoảng thời gian của phần khắc nghiệt nhất của cơn bão
8 Nói chung độ phân giải là 2 m/s được
coi là đủ.
9 Liên quan đến độ phân giải không
gian, khoảng cách tối đa giữa các điểm lân cận phải nhỏ hơn 25 % Λ1
(công thức (5)) và không lớn hơn 15% đường kính
roto. Khoảng cách này được hiểu là khoảng cách đường chéo giữa các điểm trong mỗi mắt lưới được xác định bởi bốn điểm.
Trong trường hợp lưới không đồng nhất, giá trị trung bình trên mặt phẳng roto giữa các điểm trong lưới
có thể được coi là độ phân giải
không gian đại diện, nhưng khoảng cách này phải luôn luôn giảm về phía đầu
cánh.
10 Cách tiếp cận này được coi là bảo toàn đối với các tuabin gió 3 cánh
ngược gió. Cần thận trọng đối với các khái niệm tuabin gió khác.
11 Các tải lực kéo căng
trước và tải lực hấp dẫn làm giảm
đáng kể đáp ứng tải
tổng thì được coi là các
tải thuận lợi. Trong trường hợp cả tải thuận lợi (Ffav) và không
thuận lợi (Funfav), công thức (30) trở thành
γnS(γf,unfavFk,unfav,γf,favFk,fav) ≤
R(fd)
12 Các tham số độ bền đặc trưng cần được
chọn là các phân vị 95 % (được xác định với độ tin cậy 95 %) hoặc giá trị chứng
nhận cho vật liệu có các quy trình đã được thiết lập để thử nghiệm các mẫu đại diện.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
14 Độ bền mỏi được xác định ở đây theo dải
ứng suất kết hợp với số các chu kỳ cho trước.
15 Các tiêu chí kiểm tra được xem là đáp ứng nếu các điều kiện cần
thiết không đáp ứng nằm ngoài mặt phẳng nhỏ hơn 5 zhub2.
16 Thành phần theo chiều dọc của luồng
xoáy có thể được xấp xỉ theo thành phần chiều ngang.
17 Các giá trị trượt cao đối với các
giai đoạn mở rộng thời gian đã được báo cáo cho các diện
tích nhất định liên quan đến luồng được phân tầng cao hoặc các thay đổi thô lớn.
Các điều kiện bên ngoài trong Điều 6 không được dùng để
bao trùm các trường hợp như vậy
18 Chú ý đến các ăn mòn từ các kết cấu
quan trọng trong một khoảng cách từ tuabin gió là
20 lần chiều dài đặc trưng của kết cấu.
19 Nhà thiết kế tuabin có thể cần tính đến các điều kiện tương thích lưới điện.
Điều kiện trên đại diện cho một tập hợp các yêu cầu tối thiểu. Các yêu cầu
tương thích lưới điện địa phương hoặc quốc gia cần phải được dự báo ở giai đoạn
thiết kế.
20 Một cách khác, trung tâm vị trí
tuabin gió ước tính tốc độ gió trung bình 3 s cực trị tại chiều cao của hub có
tần suất xuất hiện là 50 năm phải nhỏ hơn Ve50.
21 Ảnh hưởng địa hình
phức tạp có thể được tính đến bằng cách nhân thêm với tham số hiệu chỉnh kết cấu
luồng xoáy CCT được xác định theo
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
22 Cách tiếp cận này cũng có thể được sử dụng để đánh giá thay đổi luồng
xoáy trong cung quét, một mình hoặc kết hợp luồng xoáy luồng rẽ khí. Độ
lệch chuẩn của có
thể được xác định là giá trị trung bình trong cung quét.
23 Luồng xoáy cực trị vị trí cụ thể có thể
được đại diện bởi luồng xoáy luồng rẽ khí trung tâm lớn
nhất theo hướng nghiêm trọng nhất.
24 Chú ý rằng tỷ số phương sai thành phần
luồng xoáy trong Bảng B.1 và dạng công thức đối với thành phần vận tốc hướng lên khác biệt đôi chút
so với mô hình phổ Kaimal nguyên gốc. Tỷ lệ theo chiều dọc đã được chọn để xấp xỉ
phổ Kaimal nguyên gốc và đối với các tỷ lệ hai bên và hướng lên, đáp ứng các yêu
cầu phổ trong 6.3 đối với giới hạn phụ quán tính
tiệm cận và tỷ số phương sai được đưa ra trong Bảng B.1.
25 Trong trường hợp phân bố hướng gió
không đồng đều pw có thể được điều chỉnh
theo một hệ số bằng với tỷ số của xác suất hướng gió thực theo hướng của các
tuabin lân cận và xác suất kết hợp với phân bố hướng gió đồng nhất.
26 Các số trong ngoặc vuông tham khảo Điều
F.6.
27 Để
dễ trình bày, ảnh hưởng của sự thay đổi về mức tải ở giữa cho mỗi chu
kỳ được bỏ qua. Hạn chế này sẽ được loại
bỏ sau, khi các vấn đề các mức điểm giữa khác
nhau được giải quyết thông qua việc sử dụng một giới hạn chu kỳ tương đương.