Số mục
|
Dấu, ký hiệu,
biểu thức
|
Ý nghĩa, diễn
đạt bằng lời
|
Chú thích
và ví dụ
|
2-4.1
(11-3.1)
|
p Ù q
|
hội của p và q,
p và q
|
|
2-4.2
(11-3.2)
|
p Ú q
|
tuyển của p và q,
p
hoặc
q
|
Từ “hoặc” là không bao gồm, nghĩa là p Ú q là đúng, nếu
hoặc
p hoặc q,
hoặc cả hai là đúng.
|
2-4.3
(11-3.3)
|
p
|
phủ định của p, không p
|
|
2-4.4
(11-3.4)
|
p Þ q
|
p kéo theo q,
nếu p thì q
|
q Ü p có cùng
nghĩa như p Þ q.
Þ là dấu kéo theo.
|
2-4.5
(11-3.5)
|
p Û q
|
p tương
đương với q
|
(p Þ q) Ù
(q Þ p) có cùng nghĩa như p Û q.
Û là dấu tương đương.
|
2-4.6
(11-3.6)
|
" x Î A p(x)
|
với mỗi x thuộc A, mệnh đề p(x)
là đúng
|
Trong trường hợp rõ ràng tập đang
xét là tập A thì có thể dùng ký hiệu "x p(x).
" là lượng từ toàn thể. Đối với x Î A, xem 2-5.1.
|
2-4.7
(11-3.7)
|
$ x Î /1 p(x)
|
tồn tại một x thuộc A
để p(x) là đúng
|
Trong trường hợp rõ ràng tập đang
xét là tập A thì có thể dùng ký hiệu $ x p(x).
$ là lượng từ bộ phận (tồn tại). Đối với x Î A, xem 2-5.1.
$1x p(x) được
dùng để chỉ ra rằng chỉ có đúng một phần tử để p(x) là đúng.
$! cũng được dùng cho $1.
|
5. Tập hợp
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-5.1
(11-4.1)
x Î A
x thuộc A,
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
A ∍ x có cùng nghĩa
như x
Î A.
2-5.2
(11-4.2)
Y Ï A
y không thuộc
A,
y không phải
là một phần tử của tập A
A
có cùng nghĩa như y Ï A. Gạch phủ định có thể là gạch thẳng.
2-5.3
(11-4.5)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tập các phần tử x1, x2,
… , xn
Cũng dùng ký hiệu {xi | i Î I}, trong đó
/ là tập các chỉ số.
2-5.4
(11-4.6)
{x Î A | p(x)}
tập các phần tử thuộc A mà ứng
với nó mệnh đề p(x) là đúng
VÍ DỤ: {x Î R | x ≤ 5}
Trong trường hợp rõ ràng tập đang
xét là tập A thì có thể dùng ký hiệu {x | p(x)} (ví dụ {x
|x ≤
5}, nếu x rõ ràng là biến của các số thực).
2-5.5
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
card A
|A|
số phần tử trong A, lực lượng
của A
Lực lượng có thể là số siêu
hạn. Xem thêm 2-9.16.
2-5.6
(11-4.8)
Æ
tập rỗng
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(11-4.18)
B Í A
B chứa trong
A,
B là một tập
con của A
Mọi phần tử của B đều
thuộc A. Ì
cũng được dùng nhưng xem thêm chú thích cho 2-5.8.
A Ê B có cùng
nghĩa như B Í
A.
2-5.8
(11-4.19)
B Ì A
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
B là tập con
thực sự của A
Mọi phần tử của B đều thuộc A,
nhưng ít nhất một phần tử của A không thuộc B.
Nếu Ì được dùng cho
2-5.7, thì ⊊ phải được
dùng cho 2-5.8.
A É B có cùng
nghĩa như B Ì
A.
2-5.9
(11-4.24)
A È B
hợp của A và B
Tập các phần tử thuộc A hoặc
thuộc B hoặc thuộc cả A và B.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-5.10
(11-4.26)
A Ç B
giao của A và B
Tập các phần tử thuộc cả A và
B.
A Ç B = {x | x Î A Ù x Î B}
2-5.11
(11-4.25)
![](00910630_files/image005.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hợp của các tập A1,
A2, ..., An
Tập các phần tử thuộc ít nhất một trong
các tập
A1, A2,
..., An
,
và
cũng
được sử dụng trong
đó I là tập các
chỉ số
2-5.12
(11-4.27)
![](00910630_files/image009.gif)
A1 Ç A2 Ç …Ç An
giao của một nhóm các tập A1, …, An
Tập hợp các phần tử thuộc tất
cả
các
tập A1, A2, ..., An
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-5.13
(11-4.28)
A \ B
hiệu giữa A và B, A
trừ B
Tập các phần tử thuộc A nhưng
không thuộc B.
A \ B= { x | x Î A Ù x Ï B }
Không dùng ký hiệu A - B.![](00910630_files/image012.gif)
Cũng sử dụng
.
chủ yếu được dùng khi B là tập
con của A, và có thể bỏ ký hiệu A trong trường hợp rõ ràng
tập đang xét là tập A.
2-5.14
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(a, b)
cặp có thứ tự a, b,
cặp a, b
(a, b)= (c, d) khi và chỉ
khi
a = c
và
b = d.
Nếu dấu phẩy có thể hiểu
nhầm là dấu thập phân thì có thể sử dụng dấu chấm phẩy (;) hoặc dấu gạch (|)làm dấu phân
cách.
2-5.15
(11-4.31)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
bộ n phần tử có thứ tự
Xem chú thích cho 2-5.14.
2-5.16
(11-4.32)
A x B
tích đêcac của A và B
Tập các cặp có thứ tự (a, b)
sao cho A Î
A và
B Î B.
A x B= {(x,y)}x Î A Ù y Î B}
2-5.17
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image015.gif)
A1 x A2
x …x An
tích đêcac của các tập A1, A2…. An
Tập các bộ n phần tử có thứ tự (x1,x2,…,xn) sao cho x1 Î A1,
x2 Î A2, … xn Î An
A x A x...
x A được biểu thị bằng An trong đó n số các
thừa số trong tích.
2-5.18
(11-4.33)
idA
quan hệ đồng nhất trên A, đường
chéo của A x A
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
trong đó x Î A. Trong
trường hợp rõ ràng là tập A thì có thế bỏ chỉ số A.
6. Tập và khoảng số
tiêu chuẩn
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-6.1 (11.4.9)
N
tập các số tự nhiên,
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
N= {0.1,2,
3,...}
N*= {1, 2,
3,...}
Các giới hạn khác có thể được thể hiện
một cách rõ ràng như trình bày dưới đây.
N>5= {n Î N I n > 5}
Các ký hiệu N và ℕ cũng được
sử dụng.
2-6.2 (11.4.10)
Z
tập các số nguyên
Z= {…,-2, -1,0,
1.2,...}
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các giới hạn khác có thể được thể hiện
một cách rõ ràng như trình bày dưới đây.
Z³-3= {n
Î Z | n ³
-3}
Ký hiệu ℤ cũng được
sử dụng.
2-6.3
(11.4.11)
Q
tập các số hữu tỷ
Q*= {r
Î Q | r ¹ 0}
Các giới hạn khác có thể được thể hiện
một cách rõ ràng như trình bày dưới đây.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các ký hiệu Q và ℚ cũng được
sử dụng.
2-6.4 (11.4.12)
R
tập các số thực
R*= {x
Î R | x ¹ 0}
Các giới hạn khác có thể được thể hiện
một cách rõ ràng như trình bày dưới đây.
R³0= {x
Î R | x ³ 0}
Các ký hiệu R và ℝ cũng được
sử dụng.
2-6.5 (11.4.13)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tập các số phức
C*= {z Î C | z ¹ 0}
Các ký hiệu C và ℂ cũng được
sử dụng.
2-6.6
(-)
P
tập các số nguyên tố
P= {2, 3, 5,
7,11, 13, 17,...}
Các ký hiệu P và ℙ cũng được
sử dụng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[a, b]
khoảng đóng từ a đến b (bao
gồm cả a và b)
[a, b]= {x Î R | a
≤ x ≤ b}
2-6.8 (11.4.15)
(a, b]
khoảng nửa mở bên trái từ a đến
b (không bao a nhưng có bao b)
(a, b]= { x Î R | a
< x ≤ b}
Ký hiệu ]a,b] cũng được
sử dụng.
2-6.9 (11.4.16)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
khoảng nửa mở bên phải từ a đến
b (bao a nhưng không bao b)
[a, b)= {x Î R | a
≤ x < b}
Ký hiệu [a, b[ cũng được
sử dụng.
2-6.10 (11.4.17)
(a, b)
khoảng mở từ a đến b (không
bao gồm cả
a và b)
(a, b)= {x Î R | a < x < b}
Ký hiệu ]a, b[ cũng được
sử dụng.
2-6.11
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(-¥, b]
khoảng đóng không giới hạn đến và
bao gồm cả b
(-¥,
b]=
{ x Î R | x ≤ b)
Ký hiệu ]-¥, b] cũng được sử dụng.
2-6.12
(-)
(-¥, b)
khoảng mở không giới hạn đến và
không bao gồm b
(-¥,
b)=
{
x Î R | x < b}
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-6.13
(-)
[a,+ ¥)
Khoảng đóng không giới
hạn từ a và bao gồm cả a
[a,+ ¥)= (x Î R | a ≤ x}
Ký hiệu [a, ¥[, [a, +¥[ và [a, ¥) cũng được sử dụng.
2-6.14
(-)
(a,+ ¥)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(a,+ ¥)= { x Î R | a < x}
Ký hiệu ]a, +¥,[, ],a ¥[ và (a, ¥) cũng được sử dụng.
7. Dấu và ký hiệu hỗn
hợp
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-7.1
(11-5.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a bằng b
Có thể dùng dấu= để nhấn
mạnh rằng đẳng thức cụ thể là đồng nhất thức.
Xem thêm 2-7.18.
2-7.2
(11-5.2)
a ¹ b
a khác b
Gạch phủ định cũng có thể là gạch thẳng.
2-7.3 (11-5.3)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a theo định nghĩa bằng b
VÍ DỤ:
p := mv, trong đó p động lượng,
m là khối lượng
và v là vận tốc.
Ký hiệu= def và
cũng được sử dụng.
2-7.4
(11-5.4)
a ≙ b
a tương ứng với b
VÍ DỤ:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-7.5 (11-5.5)
a » b
a xấp xỉ bằng b
Xấp xỉ có đủ tin cậy hay
không là tùy thuộc vào người sử dụng. “Bằng” không bao gồm trong phép xấp xỉ.
2-7.6
(11-7.7)
a
b
a tiệm cận với b
VÍ DỤ:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(Về x ® a, xem 2-7.16)
2-7.7 (11-5.6)
a ~ b
a tỷ lệ với b
Dấu ~ cũng được dùng đối với quan hệ
tương đương.
Ký hiệu a ∝ b cũng được sử
dụng.
2-7.8
(-)
M
N
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
M đẳng cấu với N
M là N các tập điểm
(số liệu hình học).
Dấu này cũng được dùng cho phép đẳng cấu
của cấu trúc toán
học.
2-7.9
(11-5.7)
a < b
a nhỏ hơn b
2-7.10
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
B > a
b lớn hơn a
2-7.11 (11-5.9)
a ≤ b
a nhỏ hơn hoặc bằng b
2-7.12 (11-5.10)
b ³ a
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-7.13 (11-5.11)
a ≪ b
a rất nhỏ so
với b
a có đủ nhỏ so
với b hay không là tùy thuộc vào người sử dụng.
2-7.14 (11-5.12)
b ≫ a
b rất lớn so
với a
b có đủ lớn
so với a hay không là tùy thuộc vào người sử dụng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(11-5.13)
¥
vô hạn
Ký hiệu này không thể hiện một số
nhưng thường là bộ phận của nhiều biểu thức liên quan đến các giới hạn.
Các ký hiệu +¥, -¥ cũng được sử dụng.
2-7.16 (11-7.5)
x ® a
x tiến tới a
Ký hiệu này xuất hiện như một bộ phận
của nhiều biểu thức liên quan đến các giới hạn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-7.17 (-)
m | n
m chia n
Đối với các số nguyên m và n:
$ k Î z m×k= n
2-7.18
(-)
n º k mod m
n là đồng dư với
k mod m
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Xem thêm 2-7.1.
2-7.19
(1-5.14)
(a + b)
[a + b]
{a + b}
<a + b>
dấu ngoặc đơn dấu ngoặc vuông dấu
móc dấu ngoặc nhọn
Chỉ nên sử dụng dấu
ngoặc đơn để nhóm, vì các dấu ngoặc và
dấu móc có nghĩa riêng trong các lĩnh vực cụ thể. Dấu ngoặc đơn có thể lồng
vào nhau mà vẫn không bị lẫn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-8.1
(11-5.15)
AB || CD
đường thẳng AB song song với đường
thẳng CD
Viết g || h nếu g và
h là hai đường thẳng xác định bởi các điểm A và B, điểm c và D, tương ứng.
AB//CD cũng được dùng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(11-5.16)
AB^CD
đường thẳng AB vuông góc với đường
thẳng CD
Viết g ^ h nếu g và h là
hai đường thẳng xác định bởi các điểm A và B, điểm C và D,
tương ứng. Trong mặt phẳng, hai đường thẳng này phải cắt nhau.
2-8.3
(-)
![](00910630_files/image020.gif)
góc ở đỉnh B trong tam giác
ABC
Góc này không định hướng, thỏa mãn
điều kiện
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-8.4
(-)
![](00910630_files/image022.gif)
đoạn thẳng từ A đến B
Đoạn thẳng này là tập các điểm giữa
A và B trên đường thẳng AB.
2-8.5
(-)
![](00910630_files/image023.gif)
véctơ từ A đến B
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-8.6
(-)
d(A, B)
khoảng cách giữa điểm A và
điểm B
Khoảng cách này là độ dài của đoạn
thẳng AB và cũng là độ lớn của véctơ AB.
9. Các phép toán
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-9.1
(11-6.1)
a + b
a cộng b
Phép toán này là phép cộng. Dấu + là
dấu cộng.
2-9.2 (11-6.2)
a - b
a trừ b
Phép toán này là phép trừ. Dấu - là
dấu trừ.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
A ± b
a cộng hoặc trừ b
Đây là sự kết hợp hai giá trị trong
một biểu thức.
2-9.4 (11-6.4)
a ∓ b
a trừ hoặc cộng b
-(a ±b)= -a ∓ b
2-9.5 (11-6.5)
a • b
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a b
ab
a nhân b, a lần b
Phép toán này là phép nhân. Ký hiệu
dùng cho phép nhân là dấu chấm giữa dòng (•) hoặc dấu nhân (x).
Có thể bỏ các dấu
này nếu không có khả năng hiểu nhầm.
Xem thêm 2-5.16, 2-5.17, 2-17.10,
2-17.11, 2-17.22 và 2-17.23 đối với việc sử dụng dấu chấm và dấu nhân trong
các tích số khác nhau.
2-9.6 (11-6.6)
![](00910630_files/image025.gif)
a/b
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
= a• b-1
Xem thêm TCVN 7870-1 (ISO 80000-1),
7.1.3.
Đối với tỷ số, dấu: cũng được sử dụng,
VÍ DỤ: Tỷ số giữa độ cao h và chiều rộng
b của khổ giấy A4 là
h: b=
.
Không nên sử dụng dấu ÷
2-9.7
(11-6.7)
![](00910630_files/image027.gif)
a1 + a2
+...+ an
tổng
của a1,
a2, …, an
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Cũng được sử dụng.
2-9.8
(11-6.8)
![](00910630_files/image032.gif)
a1 × a2 ×... an,
tích
của a1, a2,
…,an
Ký hiệu
,
,
và ![](00910630_files/image036.gif)
cũng được sử dụng.
2-9.9
(11-6.9)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a lũy thừa p
Diễn đạt bằng lời của a2 là a
bình phương; diễn
đạt bằng lời a3 là a lập
phương.
2-9.10 (11-6.10)
a1/2
![](00910630_files/image038.gif)
a mũ 1/2, căn bậc hai của a
Nếu a ≥ 0, thì
³ 0
Nên tránh sử dụng ký hiệu Öa. Xem chú thích của
2-9.11.
2-9.11
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
a1/n
![](00910630_files/image039.gif)
a mũ 1/n, căn bậc n
của a
Nếu a ³ 0, thì
³ 0.
Nên tránh sử dụng ký hiệu nÖa.
Nếu dùng ký hiệu nÖ hoặc Ö cho một biểu thức
tổng hợp thì phải dùng dấu ngoặc đơn để tránh nhầm lẫn.
2-9.12
(11-6.14)
![](00910630_files/image041.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Giá trị trung bình thu được bằng các
phương pháp khác là
- trung bình điều hòa
biểu thị bằng chỉ số h,
- trung bình hình học biểu thị bằng chỉ
số
g.
- trung bình toàn phương, biểu
thị bằng chỉ số q hoặc rms.
Chỉ có thể bỏ chỉ số trong trường hợp
trung bình số học.
Trong toán học
còn được
dùng cho liên hợp phức của x; xem 2-14.6.
2-9.13
(11-6.13)
sgn a
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Với số thực a:
![](00910630_files/image043.gif)
Xem thêm mục 2-14.7.
2-9.14
(-)
inf M
cận dưới của M
Giới hạn dưới lớn nhất của tập không
rỗng các số bị chặn từ bên dưới.
2-9.15
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
sup M
cận trên của M
Giới hạn trên nhỏ nhất của một tập
không rỗng các số bị chặn từ phía trên.
2-9.16
(11-6.12)
|a|
giá trị tuyệt đối của a,
mô đun của a,
độ lớn của a
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Giá trị tuyệt đối của số thực a.
Mô đun của số phức a; xem
2-14.4.
Độ lớn của véctơ a; xem
2-17.4.
Xem thêm 2-5.5.
2-9.17
(11-6.17)
ëaû
sàn a,
số nguyên lớn nhất nhỏ hơn hoặc bằng
số thực a
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
VÍ DỤ:
ë2,4û= 2
ë-2,4û= -3
2-9.18
(-)
éaù
trần a,
số nguyên nhỏ nhất lớn hơn hoặc bằng
số thực a
VÍ DỤ:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
é-2,4ù= -2
2-9.19
(-)
int a
phần nguyên của số thực a
int a= sgn a × ë|a|û
VÍ DỤ:
int(2,4)= 2
int(-2,4)= -2
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(-)
frac a
phần thập phân của số thực a
frac a= a - int a
VÍ DỤ:
frac(2,4)= 0,4
frac(-2,4)= -0,4
2-9.21
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
giá trị nhỏ nhất của a và
b
Phép toán tổng quát hóa cho nhiều số
và các tập số. Tuy nhiên, một tập vô hạn các số không nhất thiết có phần tử
nhỏ nhất.
2-9.22
(-)
max(a, b)
giá trị lớn nhất của a và b
Phép toán tổng quát hóa cho nhiều số
và các tập số. Tuy nhiên, một tập vô hạn các số không nhất thiết có phần tử lớn nhất.
10. Tổ hợp
Trong điều này, n và k là các số tự
nhiên, với k ≤ n.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-10.1 (11-6.15)
n!
giai thừa
n!=
=
1 × 2 × 3... × n (n > 0)
0!= 1
2-10.2
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image045.gif)
[a]k
giai thừa giảm
= a × ( a - 1)-...-(a
- k + 1) (k
>
0)
= 1
a có thể là số phức.
Đối với số tự nhiên n:
= ![](00910630_files/image048.gif)
2-10.3
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(a)k
giai thừa tăng
= a × ( a + 1)-...-(a + k - 1) (k > 0)
= 1
a có thể là số phức.
Đối với số tự nhiên n:
= ![](00910630_files/image052.gif)
(a)k được gọi là ký hiệu
Pochhammer trong lý thuyết về hàm đặc biệt. Tuy nhiên, trong tổ hợp và thống
kê, thường sử dụng cùng ký hiệu
với giai thừa giảm.
2-10.4
(11-6.16)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hệ số nhị thức
=
(0 ≤ k ≤ n)
2-10.5
(-)
Bn
Số Bernoulli
![](00910630_files/image055.gif)
2-10.6
(11-6.16)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tổ hợp không lặp
=
= ![](00910630_files/image054.gif)
2-10.7
(-)
R ![](00910630_files/image056.gif)
tổ hợp lặp
R
= ![](00910630_files/image057.gif)
2-10.8
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
chuyển vị không lặp
=
= ![](00910630_files/image048.gif)
Thuật ngữ “hoán vị” được dùng khi n= k.
2-10.9
(-)
R ![](00910630_files/image058.gif)
chuyển vị lặp
R
= nk
11. Hàm số
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-11.1 (11-7.1)
f, g, h,...
hàm số
Một hàm số ấn định cho đối số bất kỳ
trong miền xác định của hàm đó một giá trị duy nhất thuộc miền giá trị.
2-11.2
(11-7.2)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
f(x1, …,xn)
giá trị của hàm số f đối với đối
số x hoặc đối số (x1),.... xn) tương ứng
Một hàm số có miền xác định là tập
các bộ n số là hàm n biến.
2-11.3
(-)
f: A →B
f ánh xạ A vào B
Hàm f có miền xác định
A và nhận giá trị 5.
2-11.4
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
f: x
T(x)
x Î
A
f là hàm số ánh xạ mọi
x Î A thành T(x)
T (x) là biểu thức xác
định chỉ ra giá trị của hàm f với đối số x. Vì f (x)= T(x), biểu thức
xác định thường được dùng như ký hiệu cho hàm f.
VÍ DỤ: f: x
3x2y, x Î [0;2]
f là hàm số (phụ thuộc vào tham số y)
xác định trong khoảng quy định bởi biểu thức 3x2y.
2-11.5
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
f(x)= y.
f ánh xạ x lên y
Ví DỤ: ![](00910630_files/image061.gif)
2-11.6
(11-7.3)
![](00910630_files/image062.gif)
f(b)- f(a)
f(…,b,…) - f(…,a,…)
Ký hiệu này chủ yếu được dùng khi tính tích phân
xác định.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
g o f
hàm hợp của f và g,
g hợp f
(g o f)(x)= g(f(x))
Trong tổ hợp g ° f, hàm g được
áp dụng sau hàm f.
2-11.8 (11-7.6)
Lim f (x)
x → a
limx®a f(x)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
f (x) ® b khi
x ® a
có thể viết limx®a f(x)= b.
Giới hạn “từ bên phải” (x > a) và
“từ bên trái” (x < a) được biểu diễn tương ứng bằng limx®a +f(x) và limx®a - f(x).
2-11.9
(11-7.8)
f(x)= O(g(x))
f (x) là O lớn của g(x), |f(x)/g(x)| bị chặn từ
phía trên trong giới hạn hàm ý theo ngữ cảnh,
f(x) có cùng bậc hoặc bậc thấp hơn so
với g(x)
Dấu “ = ” được dùng ở
đây vì lý do lịch sử và không có nghĩa bằng do không áp dụng chuyển đổi.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
sin x= O (x), khi x ® 0
2-11.10 (11-7.9)
f(x)= o(g(x))
f(x) là o nhỏ g(x),
f(x)/g(x) ® 0 trong giới hạn
hàm ý theo ngữ cảnh,
f(x) có bậc cao hơn bậc của g(x)
Dấu “= ” được dùng ở đây vì lý do lịch
sử và không có nghĩa bằng do không áp dụng chuyển đổi.
VÍ DỤ:
cos x= 1 + o (x), khi x ® 0
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(11-7.10)
Df
deltaf,
số gia hữu hạn của f
Hiệu giữa hai giá trị hàm số hàm ý
theo ngữ cảnh.
VÍ DỤ: Dx=x2-x1
Df= f(x2) -f (x1)
2-11.12
(11-7.11)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
đạo hàm của hàm số f theo x
Chỉ dùng cho các hàm số một biến.
![](00910630_files/image064.gif)
Nếu biến độc lập là thời gian t, thì
f& cũng được
dùng cho f.
2-11.13 (11-7.12)
![](00910630_files/image065.gif)
giá trị của đạo hàm của hàm f tại x= a
2-11.14 (11-7.13)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
đạo hàm bậc n của hàm f theo x
Chỉ dùng cho các hàm số một biến
![](00910630_files/image067.gif)
f’’ và f’’’ cũng được dùng tương ứng cho f(2)
và f(3).
Nếu biến độc lập là thời gian t, thì f&& cũng được
dùng cho f.
2-11.15
(11-7.14)
![](00910630_files/image068.gif)
đạo hàm riêng của hàm f theo x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các biến độc lập còn lại có thể được chỉ ra
bằng chỉ số dưới, ví dụ ![](00910630_files/image070.gif)
Ký hiệu đạo hàm riêng này được mở rộng cho
các đạo hàm bậc cao hơn, ví dụ:
![](00910630_files/image071.jpg)
Các ký hiệu khác, ví dụ
cũng được sử dụng
2-11.16 (11-7.15)
df
vi phân toàn phần của hàm f
![](00910630_files/image073.gif)
2-11.17
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
df
biến phân vô cùng bé của hàm f
2-11.18 (11-7.17)
![](00910630_files/image074.gif)
tích phân bất định của hàm f
2-11.19
(11-7.18)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tích phân xác định của hàm f từ A
đến b
Đây là trường hợp đơn giản của hàm số xác định
trong một khoảng. Cũng có thể tính tích phân của các hàm số xác định trong
các lĩnh vực chung hơn. Các ký hiệu đặc biệt, ví dụ:
được dùng cho tích phân đường cong c, mặt
s, miền ba chiều V và đường cong khép kín hoặc mặt kín, tương ứng.
Đa tích phân
,... cũng được sử dụng.
2-11.20
(-)
![](00910630_files/image078.gif)
Giá trị chính Cauchy của tích phân của f với f kỳ dị tại c
![](00910630_files/image079.gif)
Trong đó a < c < b
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(-)
![](00910630_files/image080.gif)
Giá trị chính Cauchy của tích phân của f
![](00910630_files/image081.gif)
12.Hàm mũ và hàm loga
Có thể sử dụng biến số phức, đặc biệt là
đối với cơ số e.
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-12.1 (11-8.2)
e
cơ số của loga tự nhiên
e := lim n®¥
= 2,718 281
8...
2-12.2
(11-8.1)
ax
a mũ x,
hàm mũ theo cơ số a của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-12.3
(11-8.3)
ex
exp x
e mũ x,
hàm mũ theo cơ số e của x
Xem 2-14.5.
2-12.4 (11-8.4)
logax
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
log x được dùng khi không cần thiết
phải ghi rõ cơ số.
2-12.5 (11-8.5)
In x
loga tự nhiên của x
In x= loge x
log x không được dùng thay cho In x,
Ig x, lb
x hoặc logex,
log10 x, log2
x
2-12.6
(11-8.6)
Lgx
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
lgx= log10x
Xem chú thích của 2-12.5.
2-12.7 (11-8.7)
Ib x
loga nhị phân của X
Ibx= log2x
Xem chú thích của 2-12.5.
13 Hàm số vòng và hàm
hypecbol
Số mục
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-13.1 (11-9.1)
![](00910630_files/image083.gif)
tỷ số giữa chu vi hình tròn và đường
kính của nó
p
=
3,141 592 6...
2-13.2 (11-9.2)
sin x
sin của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
thường được viết là sinn x,
cosn x,...
2-13.3 (11-9.3)
cos x
cosin của x
cos X= sin(x + p/2)
2-13.4 (11-9.4)
tan x
tang của x
tan x= sin x/cos x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-13.5
(11-9.5)
cot x
cotang của x
cot x= 1/tan x
không nên dùng ctg x.
2-13.6 (11-9.6)
sec x
sec của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-13.7
(11-9.7)
csc x
cosec của x
csc x= 1/sin x
cosec x cũng được dùng.
2-13.8
(11-9.8)
arcsin X
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
y= arcsin x Û x= sin y,
-p
/2 ≤ y ≤ p /2
Hàm arcsin là hàm ngược
của hàm sin với miền giới
hạn như trên.
2-13.9 (11-9.9)
arccos x
arc cosin của x
y= arccos x Û x = cos
y, 0 ≤ y ≤ p
Hàm arccos là hàm ngược của hàm cos với
miền giới hạn như trên.
2-13.10
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
arctan x
arc tang của x
y= arctan x Û x = tan
y,
-p/2 < y < p/2
Hàm arctan là hàm ngược của hàm tan
với miền giới hạn như trên.
Không nên sử dụng arctg x.
2-13.11 (11-9.11)
arccot x
arc cotang của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hàm arccot là hàm ngược của hàm cot
với miền giới hạn như trên.
Không nên sử dụng arcctg x.
2-13.12 (11-9.12)
arcsec x
arc sec của x
y= arcsec x Û x = sec y,
0 ≤ y ≤ p, y ≠ p/2
Hàm arcsec là hàm ngược của hàm sec
với miền giới hạn như trên.
2-13.13 (11-9.13)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
arc cosec của x
y= arccsc x Û x = csc y,
(-p/2 ≤ y ≤ p/2, y ≠ 0)
Hàm arccsc là hàm ngược của hàm csc với miền
giới hạn như trên.
Nên tránh sử dụng arccosec x.
2-13.14 (11-9.14)
sinh x
sin hypecbol của X
![](00910630_files/image085.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-13.15
(11-9.15)
cosh x
cosin hypecbol của x
cosh2 x= sinh2
x + 1
Nên tránh sử dụng ch x.
2-13.16 (11-9.16)
tanh x
tang hypecbol của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nên tránh sử dụng th x.
2-13.17 (11-9.17)
coth x
cotang hypecbol của x
coth x= 1/tanh x
2-13.18
(11-9.18)
sech x
sec hypecbolcủa x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-13.19 (11-9.19)
csch x
cosec hypecbol của x
csch x= 1/sinh x
Nên tránh sử dụng cosech x.
2-13.20
(11-9.20)
arsinh x
hàm ngược của sin hypecbol của x, miền sin
hypecbol của x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hàm arsinh là hàm ngược của hàm
sinh.
Nên tránh sử dụng arsh x.
2-13.21 (11-9.21)
arcosh x
hàm ngược cosin hypecbol của x, miền
cosin hypecbol của x
y= arcosh x Û x = cosh
y, y ³ 0
Hàm arcosh là hàm ngược của hàm cosh với miền giới
hạn như trên.
Nên tránh sử dụng arch x.
2-13.22
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
artanh x
hàm ngược tang hypecbol của x, miền tang
hypecbol của x
y= artanh x Û x =
tanh y
Hàm artanh là hàm ngược của hàm tanh.
Nên tránh sử dụng arth X.
2-13.23
(11-9.23)
arcoth x
hàm ngược cotang hypecbol của x, miền
cotang hypecbolcủa x
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hàm arcoth là hàm ngược của hàm coth với miền giới
hạn như trên.
2-13.24
(11-9.24)
arsech x
hàm ngược sec hypecbol của x, diện
tích sec hypecbolcủa x
y= arsech x Û x =
sech y, y ³
0
Hàm arcech là hàm ngược của hàm sech với miền giới
hạn như trên.
2-13.25
(11-9.25)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hàm ngược cosec hypecbol của X, miền
cosec hypecbol của X
y= arcsch x Û x =
csch y, y ³
0
Hàm arcsch là hàm ngược của hàm csch Nên tránh sử
dụng arcosech X.
14. Số phức
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-14.1 (11-10.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
j
đơn vị ảo
i2= j2=
-1
i được dùng trong toán học và vật
lý, j được dùng trong kỹ thuật điện.
2-14.2
(11-10.2)
Re z
phần thực của z
z= x + i y
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
x= Re z và y = lm z.
2-14.3
(11-10.3)
Im z
phần ảo của z
Xem 2-14.2.
2-14.4
(11-10.4)
|z|
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
|z| = ![](00910630_files/image086.gif)
trong đó x = Re z và y=
Im z.
Xem thêm 2-9.16.
2-14.5 (11-10.5)
arg z
góc cực của z
z= r eij
trong đó
r= |z| và j = arg z, -p < j <p nghĩa là Re z= r cos j và
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-14.6 (11-10.6)
![](00910630_files/image087.gif)
z*
liên hợp phức của z
chủ yếu
dùng trong toán học,
z* chủ yếu dùng trong vật lý và kỹ thuật.
2-14.7
(11-10.7)
sgn z
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
sgn z = z / |z|= exp(i arg
z) (z ≠ 0)
sgn z= 0 đối với z= 0
Xem thêm mục 2-9.13.
15. Ma trận
Ma trận thường được viết bằng chữ hoa
đậm, nghiêng, còn các phần tử của ma trận được viết bằng chữ thường nghiêng,
tuy nhiên, các dạng chữ khác cũng được sử dụng.
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(11-11.1)
![](00910630_files/image088.gif)
Ma trận A kiểu m
nhân n
A là ma trận với
các phần tử
aij
= (A)ij
m là số hàng
và n là số cột.
A= (aij) cũng được
sử dụng.
Dấu ngoặc vuông cũng được dùng thay
cho dấu ngoặc đơn.
2-15.2
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tổng của ma trận A và B
(A + B)ij=
(A)ij + (B)ij
Ma trận A và B phải có
cùng số hàng và số cột.
2-15.3
(-)
x A
tích của đại lượng vô hướng x và ma
trận A
(x A)ij= x (A)ij
2-15.4
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
AB
tích của ma trận A và B
![](00910630_files/image089.gif)
Số cột của A phải bằng
số hàng của B.
2-15.5
(11-11.3)
E
i
ma trận đơn vị
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Xem 2-17.9.
2-15.6
(11-11.4)
A-1
ma trận nghịch đảo của ma trận vuông
A
AA-1= A-1 A= E
2-15.7
(11-11.5)
AT
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image090.gif)
2-15.8
(11-11.6)
![](00910630_files/image091.gif)
A*
ma trận liên hợp phức của A
![](00910630_files/image092.gif)
được
dùng trong toán học, A* được dùng trong vật lý và kỹ thuật điện.
2-15.9
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
AH
ma trận liên hợp Hermite của A
![](00910630_files/image093.gif)
Thuật ngữ “ma trận tiếp giáp” cũng
được sử dụng.
A* và A+ cũng được
dùng cho AH.
2-15.10
(11-11.8)
![](00910630_files/image094.gif)
định thức của ma trận vuông A
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-15.11
(-)
rank A
hạng của ma trận A
Hạng của ma trận A là
số hàng độc lập tuyến tính của A. Nó cũng bằng số cột độc lập
tuyến tính của A.
2-15.12
(11-11.9)
tr A
vết của ma trận vuông A
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-15.13
(11-11.10)
||A||
chuẩn của ma trận A
Chuẩn của ma trận A là
số đặc trưng cho ma trận này và thỏa mãn bất đẳng thức tam giác:
nếu A + B=
C, thì
||A|| + ||B|| ³ ||C||.
Các chuẩn ma trận khác nhau cũng được
sử dụng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Số mục
Các tọa độ
Vị trí vectơ và vi
phân của nó
Tên của hệ tọa độ
Chú thích
2-16.1
(11-12.1)
x, y, z
![](00910630_files/image096.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
x1, x2, x3 đối với tọa
độ và e1, e2, e3 đối với
vectơ cơ
sở cũng được sử dụng. Ký hiệu này dễ tổng quát cho
không gian n chiều.
ex, ey, ez , tạo thành
một hệ trực chuẩn thuận. Xem các Hình 1 và 4.
Đối với vectơ cơ sở, i,
j, k cũng được sử dụng.
2-16.2 (11-12.2)
p,j,z
![](00910630_files/image097.gif)
tọa độ trục
ep(j), ej (j), ez
tạo thành một hệ trực chuẩn thuận. Xem Hình 2. Nếu 2= 0, thì p và j là các tọa độ cực.
2-16.3
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
r, J,j
![](00910630_files/image098.gif)
tọa độ cầu
er( J, j), eJ(J, j), ej (j) tạo thành một hệ
trực chuẩn thuận. Xem Hình 3.
CHÚ THÍCH: Nếu, trường hợp ngoại lệ, sử dụng hệ
nghịch (xem Hình 5) thay
cho hệ thuận (xem Hình 4) vì mục đích nhất định, thì phải nêu rõ để tránh sai
dấu.
![](00910630_files/image099.gif)
![](00910630_files/image100.gif)
17. Đại lượng vô hướng,
vectơ và tenxơ
Các đại lượng vô hướng, vectơ và tenxơ
là các đối tượng toán học có thể dùng để biểu thị các đại lượng vật lý nhất định
và giá trị của chúng. Chúng không
phụ thuộc vào lựa chọn cụ thể của hệ tọa độ, trong khi mỗi thành phần của một
vectơ hoặc tenxơ và từng vectơ thành phần và tenxơ thành phần lại phụ thuộc vào
lựa chọn đó.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Các thành phần Đêcac của vectơ vị trí bằng
các thành phần Đêcac của điểm cho bởi vectơ đó.
Thay cho việc coi từng thành phần như một
giá trị đại lượng vật lý (nghĩa là một trị số nhân với một đơn vị) thì có thể
viết vectơ như một vectơ trị số nhân với một đơn vị. Tất cả các đơn vị đều là
vô hướng.
VÍ DỤ:
F= (3 N, -2 N, 5 N)= (3, -2, 5) N
(trong tọa độ Đêcac)
trong đó:
F là lực;
3 N là thành phần đầu tiên, ví dụ Fx, của
vectơ F có trị số là 3 và
đơn vị N (các thành phần còn lại là 2N và 5 N);
(3, -2, 5) là vectơ trị số và N là
đơn vị.
Áp dụng xem xét tương tự với tenxơ bậc hai và bậc
cao hơn.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
nếu chỉ số xuất hiện hai lần trong một
số hạng thì tổng được lấy trên miền biến thiên của chỉ số như đã biết, và có thể
bỏ ký hiệu S.
Vô hướng là tenxơ bậc không và vectơ
là tenxơ bậc một.
Vectơ và tenxơ thường được biểu diễn bằng
các ký hiệu chung cho các thành phần của chúng, ví dụ ai cho vectơ, Tij cho tenxơ bậc
hai và aibj cho tích nhị
thức.
Chữ viết tắt “cycl” có nghĩa là hoán vị
vòng quanh của các thành phần và chỉ số. Thay cho việc viết ba công thức thành
phần tương tự nhau thì chỉ cần viết một công thức là đủ, hai công thức còn lại
tiếp sau bằng cycl, cycl.
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-17.1 (11-13.1)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
vectơ a
Có thể sử dụng ký hiệu chữ có mũi
tên trên đầu thay cho kiểu chữ đậm để chỉ thị vectơ.
2-17.2
(-)
a + b
tổng của vectơ a và b
(a + b)i= ai + bi
2-17.3
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tích của một số, lượng vô hướng hoặc
thành phần X với vectơ a
(xa)i= xai
2-17.4 (11-13.2)
|a|
a
độ lớn của vectơ a,
chuẩn của vectơ a
|| a || cũng được dùng. Xem thêm 2-9.16.
2-17.5
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image103.gif)
vectơ không
Vectơ không có độ lớn bằng 0.
2-17.6
(11-13.3)
ea
vectơ đơn vị theo
phương của a
ea= a
|a|, a
≠ 0
a = |a|ea
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image104.gif)
vectơ đơn vị theo hướng của các trục
tọa độ Đêcac
i, j, k Cũng được
dùng.
2-17.8 (11-13.5)
![](00910630_files/image105.gif)
các thành phần Đêcac của vectơ a
![](00910630_files/image106.gif)
ax ex
…..là các
vectơ thành phần. Trong trường hợp các vectơ cơ sở là đã biết
thì vectơ có thể viết là
a= (ax,
ay, az).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
r= xex
+ yey +zez là vectơ vị
trí (vectơ bán kính) của điểm đó với các tọa độ X, y, z.
2-17.9 (11-7.19)
dijk
ký hiệu delta Kronecker
![](00910630_files/image107.gif)
2-17.10
(11-7.20)
eijk
ký hiệu Levi-Civita
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
e132= e321= e213= -1
Mọi trường hợp khác eijk bằng 0.
2-17.11 (11-13.6)
a × b
tích vô hướng của a và b
![](00910630_files/image108.jpg)
Trong các lĩnh vực đặc biệt, (a,
b) cũng được dùng.
2-17.12 (11-13.7)
a x b
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong hệ tọa độ Đêcac thuận, các thành phần
là
![](00910630_files/image109.jpg)
Xem 2-17.9.
2-17.13 (11-13.8)
![](00910630_files/image110.gif)
toán tử nabla
![](00910630_files/image111.gif)
Toán tử này còn được gọi là “toán tử del”.
2-17.14 (11-13.9)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
grad j
gradien của j
![](00910630_files/image112.gif)
cần tránh viết toán tử grad trong mặt mỏng.
2-17.15 (11-13.10)
Ñ × a
div a
div của a
![](00910630_files/image113.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Ñ x a
rot a
rot của a
Các thành phần là
![](00910630_files/image114.jpg)
Phải tránh phép toán rot mặt cong và mỏng.
![](00910630_files/image115.jpg)
Xem 2-17.10.
2-17.17 (11-13.12)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
D
toán tử Laplace
![](00910630_files/image116.jpg)
2-17.18 (11-13.13)
ÿ
toán tử Dalembert
![](00910630_files/image117.jpg)
2-17.19
(11-13.14)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tenxơ T bậc hai
Để biểu thị tenxơ bậc hai, có thể dùng hai
mũi trên trên chữ cái thay cho kiểu chữ không chân in đậm.
2-17.20
(11-13.15)
Txx, Txy, .., Tzz
T11, T12, … , T33
thành phần Đêcac của tenxơ
T
![](00910630_files/image119.gif)
là các tenxơ thành phần.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image120.gif)
2-17.21 (11-13.16)
ab
aÄb
tích nhị nguyên,
tích tenxơ của hai vectơ a
và b
tenxơ bậc hai với các thành phần (ab)ij
= aibj
2-17.22 (11-13.17)
TÄS
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tenxơ bậc bốn với các thành phần
![](00910630_files/image121.gif)
2-17.23 (11-13.18)
T×S
tích nội của hai tenxơ bậc hai T
và S
tenxơ bậc hai với các thành phần
![](00910630_files/image122.gif)
2-17.24
(11-13.19)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tích nội của tenxơ bậc hai T
và vectơ a
vectơ với các thành phần
![](00910630_files/image123.gif)
2-17.25 (11-13.20)
T:S
tích vô hướng của hai tenxơ bậc hai T và S
lượng vô hướng
![](00910630_files/image124.gif)
18 Phép biến đổi
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-18.1
(-)
![](00910630_files/image125.gif)
phép biến đổi Fourier của f
![](00910630_files/image126.gif)
Thường ký hiệu bằng ![](00910630_files/image127.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
cũng được dùng.
2-18.2
(-)
![](00910630_files/image129.gif)
phép biến đổi Laplace của f
![](00910630_files/image130.gif)
Thường ký hiệu bằng ![](00910630_files/image131.gif)
Phép biến đổi Laplace hai vế cũng được
sử dụng, tính theo công
thức tương tự nhưng với
âm vô cùng thay
cho không.
2-18.3
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
3 (an)
phép biến đổi z của (an)
![](00910630_files/image132.gif)
3 là phép toán tính theo dãy (an) chứ không
phải là hàm số của an.
Phép biến đổi z hai vế cũng được sử
dụng, tính theo công
thức tương tự nhưng với âm vô cùng thay cho không.
2-18.4
(11-7.22)
H(x)
e(x)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image133.gif)
U(x) cũng được dùng.
J (t) được dùng cho hàm bậc thang đơn vị
của thời gian.
VÍ DỤ: (LH)(s)= 1/s (Re s > 0)
2-18.5
(11-7.21)
d(x)
phân bố delta Dirac, hàm delta Dirac
![](00910630_files/image134.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Tên đơn vị xung cũng được dùng.
VÍ DỤ: L d= 1
Xem thêm 2-18.6 và IEC 60027-
6:2006, mục 2.01.
2-18.6
(11-7.23)
f *g
tích chập của f và g
![](00910630_files/image135.gif)
19 Các hàm đặc biệt
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Số mục
Dấu, ký hiệu,
biểu thức
Ý nghĩa, diễn
đạt bằng lời
Chú thích
và ví dụ
2-19.1
(-)
g
C
hằng số Euler
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2-19.2
(11-14.19)
(z)
hàm gamma
(z)
là hàm phân hình với các cực tại 0, -1.-2, -3,...
![](00910630_files/image137.gif)
2-19.3 (11-14.23)
![](00910630_files/image138.gif)
hàm zeta Riemann
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image139.gif)
2-19.4
(11-14.20)
B (z, w)
hàm beta
![](00910630_files/image140.gif)
2-19.5 (11-14.21)
Ei x
tích phân hàm mũ
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Đối với
, xem 2-11.20.
2-19.6
(-)
li x
tích phân loga
![](00910630_files/image143.gif)
Đối với
, xem 2-11.20.
2-19.7
(-)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
tích phân sin
được gọi là tích phân sin bù.
2-19.8
(-)
S(z)
C(z)
tích phân Fresnel
![](00910630_files/image145.jpg)
2-19.9 (11-14.22)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hàm sai số
![](00910630_files/image146.gif)
erfc x = 1- erf x được gọi
là hàm sai số bù.
Trong thống kê học, hàm phân bố
được dùng
2-19.10
(11-14.16)
F (j, k)
tích phân eliptic không đầy đủ loại
một
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
K(k)= F(p/2, k) là tích
phân eliptic đầy đủ loại một (ở đây 0 < k < 1, k Î R).
2-19.11 (11-14.17)
E (j, k)
tích phân eliptic không đầy đủ loại
hai
![](00910630_files/image149.gif)
E(k)= E(p/2, k) là tích
phân eliptic đầy đủ loại hai (ở đây 0 < k < 1, k Î R).
2-19.12 (11-14.18)
Õ(n, j , k)
tích phân eliptic không đầy đủ loại
ba
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Õ (n,k)= Õ (n, p/2, k) là
tích phân eliptic đầy đủ loại ba (ở
đây 0 < k < 1, k Î R).
2-19.13 (11-14.14)
F (a, b, c, z)
hàm siêu hình học
Đối với (a)n, (b)n và (c)n, xem
2-10.3. Nghiệm của
z(1 - z)y” + [c - (a + b
+ 1 )z]y' - aby = 0
2-19.14
(11-14.15)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
hàm siêu hình học suy biến
![](00910630_files/image152.gif)
Đối với (a)n và (c)n,
xem 2-10.3.
Nghiệm của zy” + [c - z]y’ -ay= 0
2-19.15
(11-14.8)
Pn(z)
đa thức Legendre
![](00910630_files/image153.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(1 -z2)y’’- 2zy’ + n(n+1 )y= 0
2-19.16 (11-14.9)
(z)
hàm liên hợp Legendre
![](00910630_files/image155.gif)
Nghiệm của
![](00910630_files/image156.gif)
Hệ số (-1)m tuân theo lý thuyết
chung của hàm cầu.
2-19.17
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(J,j)
hàm điều hòa cầu
![](00910630_files/image158.gif)
Nghiệm của
![](00910630_files/image159.gif)
2-19.18
(11-14.11)
Hn(z)
đa thức Hermite
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nghiệm của
y”-2zy”+2ny=0 (n Î N)
2-19.19 (11-14.12)
Ln(z)
đa thức Laguerre
![](00910630_files/image161.gif)
Nghiệm của zy”+ (1 - z )y’ + ny = 0
2-19.20 (11-14.13)
(z)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image163.gif)
Nghiệm của
zy” + (m+1-z)y’ + (n-m)y = 0
2-19.21
(-)
Tn(z)
đa thức Chebyshev loại một
Tn(z) = cos (n arccos z) (n Î N)
Nghiệm của (1- z2)y”- z y’ + n2
y = 0
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(-)
Un(z)
đa thức Chebyshev loại hai
![](00910630_files/image164.gif)
Nghiệm của
(1-z2)y” - 3 zy2 +
n(n+2)y = 0
2-19.23
(11-14.1)
Jv(z)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
![](00910630_files/image165.gif)
Nghiệm của
z2 y” + zy’ + (z2 - v2)y
= 0
2-19.24
(11-14.2)
Nv (z)
hàm Neumann, hàm trụ loại hai
![](00910630_files/image166.gif)
vế phải của công thức này được thay bằng
giá trị giới hạn của nó nếu v Î
Z. Yv (z) cũng được dùng.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(z)
(z)
hàm Hankel,
hàm trụ loại ba
(z) = Jv(z)
+ iNv(z)
(z) = Jv(z)
+ iNv(z)
(v Î
C)
2-19.26
(11-14.4)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Kv (z)
hàm Bessel cải biên
![](00910630_files/image169.jpg)
Nghiệm của
z2y” + zy’ - (z2 + v2)y
= 0
2-19.27
(11-14.5)
jl(z)
hàm cầu Bessel
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nghiệm của
z2y” + 2zy’ + [z2
-l(l+1)]y = 0
2-19.28 (11-14.6)
nl(z)
hàm cầu Neumann
yl(z) cũng được dùng.
(l Î
N)
2-19.29 (11-14.7)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
(z)
hàm cầu Hankel
Hàm cầu Bessel cải biên (tương tự
như 2-19.26) có thể được xác định và ký hiệu bằng il(z) và kl(z) tương ứng.
2-19.30
(-)
Ai(z)
Bi(z)
hàm Airy
![](00910630_files/image174.jpg)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nghiệm toàn phần của y” - zy = 0
Phụ lục A
(qui định)
Làm rõ các ký hiệu sử dụng
ISO/IEC 10646 cung cấp tên của các ký
hiệu cùng với các loại mã được sử dụng khi các ký hiệu hoặc chữ cái này có mặt
trong giao tiếp bằng máy. Mục đích chính của ISO/IEC 10646 là đưa ra dấu hiệu
nhận biết rõ ràng cho chữ cái hoặc ký hiệu. Tiêu chuẩn này không mô tả đầy đủ các
phương tiện và khái niệm của ISO/IEC 10646.
Unicode Consortium đã xuất bản quy định
kỹ thuật liên quan [3] .Tuy nhiên, quy
định Unicode Consortium [3] cũng bổ sung các thuộc tính của các ký tự
(ví dụ như chúng là con số hay chữ in/chữ thường,...). Các thuộc tính này không
quan trọng đối với tiêu chuẩn này.
Với mục đích của các bảng dưới đây, cả
ISO/IEC 10646 và tài liệu tham khảo 3 đều đưa ra các quy định giống nhau, thường
được gọi là “ký tự Unicode”.
ISO/IEC 10646 và Unicode được xây dựng
như một dạng mở rộng của bảng chữ cái bao trùm “ASCII” (hệ Latinh cơ sở). Có một số
cách mã hóa các ký hiệu và ký tự, trong đó phổ biến nhất là bộ mã 32-bit, bộ mã
16-bit - không phải toàn bộ các ký tự - và bộ mã có tên gọi UTF-8 có độ dài biến
thiên, nhưng dẫn đến bộ mã ký tự ASCII trong một octave.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Phụ lục quy định này được đưa ra để
làm rõ thêm về ký hiệu được sử dụng trong nội dung của tiêu chuẩn này, bất kể sử
dụng phông chữ nào.
Bảng A.1 có bốn cột.
- Cột thứ nhất có hàng viện dẫn đến số mục
trong nội dung tiêu chuẩn trong đó ký hiệu được sử dụng. (Tiêu đề:
“Số mục”).
- Cột thứ hai lặp lại ký hiệu với cùng phông chữ,
vị trí, định dạng và cỡ được dùng trong nội dung tiêu chuẩn này. (Tiêu đề: “Dấu,
ký hiệu”).
- Cột thứ ba nêu tên gọi trong ISO/IEC 10646 và
Unicode [3] (chúng giống
hệt nhau). Ví dụ: “TÍCH CƠ SỐ
N” (ngược với “CHỮ HY LẠP HOA Pl”) hoặc “TỔNG CƠ SỐ N” (ngược với
“CHỮ HY LẠP HOA SIGMA”). [Tiêu đề: “Tên của ký hiệu
(xem ISO/IEC 10646)”.] Thực tế là một số tên gọi
trong ISO/IEC 10646 không nhất quán với thực tiễn và sử dụng hiện hành của ký
hiệu đi kèm và, đặc biệt là, khác với cách sử dụng trong tiêu chuẩn này.
- Cột thứ tư đưa ra (để dễ tham chiếu và làm
rõ) bộ mã 16 bit ấn định cho ký hiệu ở cả ISO/IEC 10646 và Unicode
[3]. UTF-8 (mã hóa có độ dài biến
thiên, chỉ dùng một octave đối với các ký tự trong bộ ký tự ASCII) và bộ mã 32
bit - và các bộ khác - cũng có thể sử dụng. Tiêu đề: “Giá trị cơ số 16 của ký
hiệu (xem ISO/IEC 10646”.]
CHÚ THÍCH: Trong các phần khác của bộ
TCVN 7870 (ISO 80000), “kiểu chữ” (tháng hoặc nghiêng, không đậm hoặc đậm,
hoặc đậm nghiêng) cũng có cùng ý nghĩa và phải được gắn thêm vào.
Tuy nhiên, trong tiêu chuẩn này, tất cả các ký hiệu đều ở kiểu chữ thẳng và không có
cột nào trong bảng dưới đây nêu thông tin như vậy.
Thông tin bổ sung về các ký hiệu dùng trong
toán học được cho trong tài liệu tham khảo [4]
Bảng A.1
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Dấu, ký hiệu
Tên ký hiệu
(xem ISO/IEC 10646)
Giá trị cơ số 16 của ký hiệu
(Xem ISO/IEC 10646)
2-4.1
∧
VÀ
2227
2-4.2
∨
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2228
2-4.3
¬
DẤU PHỦ ĐỊNH
00AC
2-4.4
⇒
MŨI TÊN KÉP SANG PHẢI
21D2
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
⇔
MŨI TÊN KÉP TRÁI PHẢI
21D4
2-4.6
∀
VỚI MỌI
2200
2-4.7
∃
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2203
2-5.1
∈
PHẦN TỬ CỦA
2208
2-5.2
∉
KHÔNG PHẢI PHẦN TỬ CỦA
2209
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
|
ĐƯỜNG THẲNG ĐỨNG
007C
2-5.5
|
ĐƯỜNG THẲNG ĐỨNG
007C
2-5.6
∅
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2205
2-5.7
⊆
TẬP CON CỦA HOẶC BẰNG
2286
2-5.8
⊂
TẬP CON CỦA
2282
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
∪
HỢP
222A
2-5.10
∩
GIAO
2229
2-5.11
⋃
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
22C3
2-5.12
⋂
GIAO CƠ SỐ N
22C2
2-5.13
∖
DẤU TRỪ TẬP HỢP
2216
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
∁
BÙ
2201
2-5.16
×
DẤU NHÂN
00D7
2-5.17
Õ
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
220F
2-6.1
ℕ
N HOA KÉP
2115
2-6.2
ℤ
Z HOA KÉP
2124
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
ℚ
Q HOA KÉP
211A
2-6.4
ℝ
R HOA KÉP
211D
2-6.5
ℂ
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2102
2-6.6
ℙ
P HOA KÉP
2119
2-7.1
=
DẤU BẰNG
003D
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
¹
KHÁC
2260
2-7.3
≔
HAI CHẤM BẰNG
2254
2-7.3
≝
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
225D
2-7.4
≙
ƯỚC LƯỢNG BẰNG
2259
2-7.5
≈
XẤP XỈ BẰNG
2248
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
≃
TIỆM CẬN BẰNG
2243
2-7.7
~
TƯƠNG ĐƯƠNG
223C
2-7.7
∝
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
221D
2-7.8
ĐỒNG DẠNG VỚI
2245
2-7.9
<
DẤU NHỎ HƠN
003C
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
>
DẤU LỚN HƠN
003E
2-7.11
£
NHỎ HƠN HOẶC BẰNG
2264
2-7.12
³
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2265
2-7.13
≪
RẤT NHỎ HƠN
226A
2-7.14
≫
RẤT LỚN HƠN
226B
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
¥
VÔ CÙNG
221E
2-7.16
→
MŨI TÊN SANG PHẢI
2192
2-7.17
∣
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2223
2-7.18
º
ĐỒNG NHẤT BẰNG
2261
2-7.19
<
DẤU NGOẶC NHỌN TRÁI
27E8
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
>
DẤU NGOẶC NHỌN PHẢI
27E9
2-8.1
∥
SONG SONG VỚI
2225
2-8.2
^
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
27C2
2-8.3
Ð
GÓC
2220
2-9.1
+
DẤU CỘNG
002B
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
-
DẤU TRỪ
2212
2-9.3
±
DẤU CỘNG TRỪ
00B1
2-9.4
∓
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2213
2-9.5
⋅
TOÁN TỬ CHẤM
22C5
2-9.5
×
DẤU NHÂN
00D7
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
/
DẤU GẠCH CHÉO
002F
2-9.7
å
TỔNG CƠ SỐ N
2211
2-9.8
Õ
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
220F
2-9.10
Ö
CĂN BẠC HAI
221A
2-9.12
<
DẤU NGOẶC NHỌN TRÁI
27E8
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
>
DẤU NGOẶC NHỌN PHẢI
27E9
2-9.16
|
ĐƯỜNG THẲNG ĐỨNG
007C
2-9.17
ë
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
230A
2-9.17
û
SÀN PHẢI
230B
2-9.18
é
TRẦN TRÁI
2308
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
ù
TRẦN PHẢI
2309
2-11.3
®
MŨI TÊN SANG PHẢI
2192
2-11.4
![](00910630_files/image059.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
21A6
2-11.7
∘
PHÉP VÒNG
2218
2-11.11
∆
SỐ GIA
2206
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
′
PHẨY TRÊN
2032
2-11.15
![](00910630_files/image176.gif)
VI PHÂN TỪNG PHẦN
2202
2-11.16
d
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
0064
2-11.17
d
CHỮ DELTA THƯỜNG HY LẠP
03B4
2-11.18
ò
TÍCH PHÂN
2228
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
òò
TÍCH PHÂN KÉP
222C
2-11.19
∮
TÍCH PHÂN ĐƯỜNG CONG KÍN
222E
2-11.19
∯
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
222F
2-11.20
![](00910630_files/image177.gif)
TÍCH PHÂN PHẦN HỮU HẠN
2A0D
2-17.11
⋅
TOÁN TỬ CHẤM
22C5
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
×
DẤU NHÂN
00D7
2-17.13
∇
NABLA
2207
2-17.17
∆
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2206
2-17.18
□
DẤU VUÔNG TRẮNG
25A1
2-17.21
⊗
NHÂN TRÒN
2297
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
ℱ
CHỮ F HOA
2131
2-18.2
ℒ
CHỮ L HOA
2112
2-18.3
![](00910630_files/image178.gif)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2128
2-18.6
∗
TOÁN TỬ SAO
2217
THƯ
MỤC TÀI LIỆU THAM KHẢO
[1] ISO/IEC 10646:2003, Information
technology- Universal Multiple-Octet Coded Character Set (UCS) (Công nghệ
thông tin - Bộ mã ký tự 8 bit chung)
[2] IEC 60027-6:2006, Letter symbols to
be used in electrical technology - Part 6: Control technology (Ký hiệu bằng
chữ dùng trong kỹ thuật điện - Phần 6: Kỹ thuật điều khiển)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[4] Unicode Technical Report #25 - Unicode
support for mathematics. The Unicode Consortium. (Reading,
MA, Addison-Wesley) URL:
http://www.unicode.org/reports/tr25
MỤC LỤC
Lời nói đầu
Lời giới thiệu
1. Phạm vi áp dụng
2. Tài liệu viện dẫn
3. Biến số, hàm số và toán tử
4. Logic toán
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
6. Tập và khoảng số tiêu chuẩn
7. Dấu và ký hiệu hỗn hợp
8. Hình học sơ cấp
9. Các phép toán
10. Tổ hợp
11. Hàm số
12. Hàm mũ và hàm loga
13. Hàm số vòng và hàm hypecbol
14. Số phức
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
16. Hệ tọa độ
17. Đại lượng vô hướng, vectơ và tenxơ
18. Phép biến đổi
19. Các hàm đặc biệt
Phụ lục A (qui định) Làm rõ các
ký hiệu sử dụng
Thư mục tài liệu tham khảo