A
|
= Biến số hình học của
cửa hút được sử dụng trong tính toán để hiệu chỉnh cột áp
hút
thực
được yêu cầu ở ống
hút.
|
B
|
= Thông số được sử dụng trong quy
trình hiệu chỉnh độ nhớt; Thông số B được sử dụng như là số Reynolds của
bơm đã tiêu chuẩn hóa và để hiệu chỉnh độ chính xác tốc độ đặc trưng của bơm.
|
BEP
|
= Điểm có hiệu suất tốt nhất (xác định
bởi lưu lượng
và cột áp mà tại đó hiệu suất bơm là lớn nhất ở một tốc độ cho
trước).
|
Ch
|
= Hệ số hiệu chỉnh hiệu suất.
|
Ch-RR
|
= Hệ số hiệu chỉnh hiệu suất do ảnh
hưởng của ma sát giữa bánh công tác và thân.
|
CH
|
= Hệ số hiệu chỉnh cột áp.
|
CBEP-H
|
= Hệ số hiệu chỉnh cột áp ứng với
lưu lượng tại đó hiệu suất bơm lớn nhất đối với nước.
|
CNPSH
|
= Hệ số hiệu chỉnh cột áp hút thực.
|
CQ
|
= Hệ số hiệu chỉnh lưu lượng.
|
d2
|
= Đường kính ngoài của bánh công
tác, tính bằng mét
(ft).
|
g
|
= Gia tốc trọng trường, tính bằng m/s2
(ft/s2).
|
H
|
= Cột áp trên từng tầng
cánh, tính bằng mét (ft).
|
HBEP-vis
|
= Cột áp nhớt, tính bằng mét (ft): cột
áp trên từng tầng cánh tại lưu lượng mà hiệu suất của
bơm là lớn nhất khi bơm chất lỏng nhớt.
|
HBEP-W
|
= Cột áp nước, tính bằng mét (ft): cột
áp trên từng tầng cánh tại lưu lượng mà hiệu suất của
bơm là lớn nhất khi bơm nước.
|
HL
|
= Tổn thất thủy lực, tính bằng mét
(ft).
|
Hth
|
= Cột áp lý thuyết (khi không có tổn
thất lưu lượng), tính bằng mét (ft).
|
Hvis
|
= Cột áp nhớt, tính bằng mét (ft); cột
áp trên từng tầng cánh khi bơm chất lỏng nhớt.
|
Hvis-tot
|
= Cột áp nhớt, tính bằng mét (ft); tổng
cột áp của bơm khi bơm chất lỏng nhớt.
|
HW
|
= Cột áp nước, tính bằng mét (ft): cột
áp trên từng tầng cánh khi bơm nước.
|
N
|
= Số vòng quay của trục bơm, r/min
|
NS
|
= Số vòng quay đặc trưng.
|
|
Đơn vị
|
ns
|
= Số vòng quay đặc trưng.
|
|
Đơn vị
|
|
= Số vòng quay đặc trưng của một bánh công tác được định nghĩa là số
vòng quay trên phút mà tại
đó một bánh công tác có kích thước hình học tương tự đẩy được một
mét khối chất lỏng trên
giây (m3/s) với cột áp một mét (đơn vị Mét) hoặc 1 gallon Mỹ trên
phút với cột áp 1 foot (Đơn vị USCS). Phải sử dụng những hệ đơn vị đo lường
này để xác định số vòng
quay đặc trưng.
CHÚ THÍCH: Trong định
nghĩa này, sử dụng khái niệm lưu lượng của
bơm, không phải là lưu lượng ở
rãnh vào bánh công tác.
|
NPSHA
|
= Cột áp hút thực, tính bằng mét
(ft) cung cấp cho bơm.
|
NPSHR
|
= Cột áp hút thực, tính bằng mét (ft)
cần thiết của bơm với tổn thất cột áp
tiêu chuẩn 3
%.
|
NPSHRBEP-W
|
= Cột áp hút thực, tính bằng mét (ft) đối
với nước tại lưu lượng đạt hiệu suất lớn nhất với tổn thất cột áp tiêu chuẩn
3 %.
|
NPSHRvis
|
= Cột áp hút thực, tính bằng mét
(ft) đối với chất lỏng nhớt.
|
NPSHRW
|
= Cột áp hút thực, tính bằng mét
(ft) đối với nước với tổn thất cột áp tiêu chuẩn 3 %.
|
P
|
= Công suất tại khớp nối, đơn vị kW
hoặc mã lực (hp).
|
Pm
|
= Tổn thất công suất cơ khí, đơn vị
kW hoặc mã lực (hp).
|
Pu
|
= Công suất hữu ích truyền cho chất
lỏng: Pu = rgHQ đơn vị kW hoặc
mã lực (hp).
|
PRR
|
= Tổn thất công suất do
ma sát giữa bánh công tác và thân, kW (hp).
|
Pvis
|
= Công suất nhớt, đơn vị kW hoặc mã
lực (hp): là công suất cần thiết của bơm để thắng sức cản do độ nhớt.
|
Pw
|
= Công suất cần thiết của bơm khi
bơm nước, đơn vị kW hoặc mã lực
(hp).
|
Q
|
= Lưu lượng bơm, m3/h
(gpm).
|
QBEP-W
|
= Lưu lượng tối ưu, m3/h
(gpm) mà tại đó bơm có hiệu suất lớn nhất.
|
Qvis
|
= Lưu lượng nhớt, m3/h
(gpm): lưu lượng khi bơm chất lỏng nhớt.
|
Qw
|
= Lưu lượng nước, m3/h
(gpm): lưu lượng khi bơm nước.
|
q*
|
= Tỷ số giữa lưu lượng
và lưu lượng tại điểm tốt nhất của bơm: q* = Q/QBEP.
|
Re
|
= Số Reynolds Re = wr22/n.
|
r2
|
= Bán kính ngoài của bánh công tác,
m (ft).
|
s
|
= Trọng lượng tương đối của chất lỏng
được bơm so với nước ở nhiệt độ
20 °C (68 °F).
|
nvis
|
= Độ nhớt nhớt động học,
centiStockes (cSt) của chất lỏng được bơm.
|
nw
|
= Độ nhớt nhớt động học,
centiStockes (cSt) của chất lỏng thử nghiệm chuẩn với nước.
|
h
|
= Hiệu suất toàn bộ (tại khớp nối).
|
hBEP-W
|
= Hiệu suất lớn nhất khi bơm nước.
|
hh
|
= Hiệu suất thủy lực.
|
hvis
|
= Hiệu suất nhớt; hiệu suất khi bơm
chất lỏng nhớt.
|
hvol
|
= Hiệu suất thể tích.
|
hw
|
= Hiệu suất bơm nước: hiệu suất bơm
khi bơm nước.
|
m
|
= Độ nhớt động lực học (độ nhớt tuyệt
đối), N.s/m2 (Ib*s/ft2)
|
n
|
= Độ nhớt động học, m2/s
(ft2/s).
|
r
|
= Khối lượng riêng, kg/m3
(slugs/ft3).
|
y
|
= Hệ số cột áp.
|
w
|
= Vận tốc góc của trục hoặc bánh
công tác, tính bằng radian trên giây.
|
3. Tóm tắt
Tỉnh năng của một bơm rô to động lực
(bơm ly tâm hoặc
bơm trục đứng) khi bơm chất lỏng nhớt có sự khác biệt khi bơm nước, trong khi hầu hết đường đặc
tính được đưa
ra chủ yếu là trường hợp bơm làm việc với nước. Thông thường cột áp (H) và lưu
lượng (Q) sẽ giảm khi độ nhớt tăng. Công suất (P) cũng như yêu cầu của cột áp hút thực (NPSHR) sẽ tăng lên trong
phần lớn các trường hợp. Mô men khởi động cũng có thể bị ảnh hưởng.
Các phương pháp lý thuyết dựa trên
phân tích tổn thất có thể cho những
phân tích chính xác hơn về ảnh hưởng của độ nhớt lên tính năng của bơm khi đã
biết chi tiết kích thước hình học của
bơm cụ thể. Tiêu chuẩn này giải thích các cơ sở
của các phương pháp lý thuyết trên. Người sử dụng có thể lấy thông tin tư vấn của
các nhà sản xuất bơm để có các phân tích chính xác hơn về tính năng của một bơm với một chất lỏng nhớt cụ
thể.
Tiêu chuẩn này bao gồm cả các
xem xét về mặt kỹ thuật và các khuyến cáo khi sử dụng bơm với các loại chất lỏng
nhớt.
4. Giới thiệu
Các tính năng (cột áp, lưu lượng, hiệu
suất [h] và công suất)
của một bơm rô to động lực được xác định từ các đường đặc tính của bơm, là những đường
được xây dựng từ những số liệu thử nghiệm của bơm với nước. Khi bơm làm việc với
một chất lỏng có độ nhớt lớn hơn, các tính năng trên của bơm giảm xuống. Công
suất tiêu thụ sẽ tăng lên và cột áp, lưu lượng và hiệu suất sẽ giảm xuống.
Đối với người sử dụng, việc hiểu được
một số trường hợp thực tế là
rất quan trọng để có thể định lượng
các ảnh hưởng của độ nhớt đến vận hành của bơm rô to động lực. Thứ nhất, cơ sở dữ
liệu thử nghiệm đã xây dựng là của các bơm riêng biệt chứ không có tính tổng
quát cho tất cả các bơm. Thứ hai, cơ sở dữ liệu theo kích thước của bơm và độ nhớt của chất lỏng là tương đối hạn
chế. Thứ ba, tất cả các phương pháp hiện
có dùng để đánh giá ảnh hưởng của độ nhớt lên tính năng của bơm cho kết quả có sự sai khác so với cơ sở
dữ liệu thử nghiệm. Thứ tư, phương pháp thực nghiệm trình bày trong tiêu chuẩn này dựa trên so sánh các
số liệu thống kê của nhiều quy trình hiệu chỉnh
khác nhau. Phương pháp này được lựa chọn để đảm bảo sự khác biệt giữa số liệu tính toán và thực
tế là nhỏ nhất. Trên
cơ sở phân tích như trên cho thấy
không thể coi phương pháp này là một phương pháp tính toán lý
thuyết có độ chính xác cao khi xác định các hệ số hiệu chỉnh tính năng của bơm.
Phương pháp này
cho phép người sử dụng có thể so sánh một cách tổng quát ảnh hưởng của việc sử
dụng bơm với chất lỏng có độ nhớt cao
hơn để tránh được sai sót khi sử dụng. Xem Điều 6 về các loại bơm
có thể áp dụng phương pháp này.
Như chú thích ở đoạn trên, thực tế có
nhiều phương pháp được xây dựng bởi các cá nhân và công ty gặp phải các vấn đề
liên quan đến tổn thất thủy lực
thực tế bên trong của bơm. Về mặt lý thuyết, có thể đánh giá được ảnh hưởng của độ nhớt bằng cách định lượng những tổn thất
này. Quy trình xác định những tổn thất
này liên quan đến kích thước cụ thể bên trong của
bơm, tuy nhiên những kích thước này thường không được cung cấp cho người sử dụng.
Hơn nữa, các
phương pháp này cần một số hệ số thực nghiệm mà các hệ số thực nghiệm này chỉ
có thể xác định được một cách chính xác khi có đầy đủ thông tin về việc thử
nghiệm bơm trong chất lỏng nhớt.
Phương pháp phân tích tổn thất có độ chính xác cao hơn phương pháp thực nghiệm
trong tiêu chuẩn này, đặc biệt với một số loại bơm có tính năng và kích thước cụ
thể.
Ngoài các quy trình hiệu chỉnh, tiêu chuẩn
này cung cấp một số mô tả
định tính của các tổn thất thủy lực khác nhau trong bơm dẫn tới giảm các tính
năng của bơm. Ngoài ra, tiêu chuẩn này còn cung cấp quy trình để xác định
ảnh hưởng của độ nhớt lên mô men khởi động và NPSHR.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
5. Các xem xét cơ bản
5.1. Hệ số hiệu chỉnh độ nhớt
Khi bơm làm việc với chất lỏng có độ
nhớt cao, như dầu nặng thì tính năng của
bơm bị thay đổi so với khi bơm nước, do tổn thất tăng lên. Việc sụt giảm tính
năng khi bơm chất lỏng nhớt có thể được đánh giá thông qua các hệ số hiệu chỉnh
cho cột áp, lưu lượng và hiệu suất khi so với các tính năng tương
ứng khi bơm nước.
Như vậy đường đặc tính cột áp, lưu lượng
và hiệu suất đối với chất lỏng nhớt (có chỉ số vis) được xác định từ cột áp,
lưu lượng và hiệu suất đo được đối với nước (chỉ số w) dựa vào các hệ số CH,
CQ và Ch tương ứng. Các hệ số
này được xác định trong công thức (1).
; ; (1)
Hình 1a) và Hình 1b) thể hiện sự thay đổi điển
hình các đặc tính cột áp, lưu lượng, hiệu suất và công suất của bơm khi chuyển từ bơm nước sang
bơm chất lỏng có độ nhớt cao.
Nếu các số liệu đo đạc nằm lân cận điểm
hiệu suất lớn nhất (BEP) khi bơm nước (BEP-W), thì các hệ số CH và CQ có thể xác định
trực tiếp trên Hình 1c). Đường
thẳng nối giữa BEP-W và gốc đồ thị Q-H (H = 0 và Q = 0) được gọi là đặc tính
loe rộng hoặc xoắn ốc. Số liệu thử
nghiệm được ghi lại ở Tài liệu
tham khảo [10] và [14] cho thấy
BEPs đối với chất lỏng nhớt
phụ thuộc vào đặc tính loe rộng và xoắn ốc này. Bởi vậy có thể coi một cách gần đúng là CH
bằng CQ tại điểm
BEPs đối với chất lỏng nhớt.
CHÚ DẪN:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
2 Chất lỏng nhớt
3 Các đặc tính loe rộng hoặc xoắn ốc
Hình 1 - Sự thay đổi
các đặc tính của bơm khi bơm chất lỏng nhớt
5.2. Phương pháp xác định
các hệ số hiệu chỉnh
Các hệ số hiệu chỉnh có thể được xác định
bằng thực nghiệm từ ngân hàng dữ liệu đo đạc về các loại bơm khác nhau với nước
và chất lỏng với nhiều độ nhớt khác nhau hoặc có thể xác định từ một
mô hình vật lý dựa trên phương pháp phân tích tổn thất năng lượng trong bơm.
Các ví dụ về phương pháp phân tích tổn thất được cho trong Thư mục tài liệu tham
khảo [7], [8], [9], [10] và
[18].
Với số liệu hạn chế, phương pháp phân
tích thực nghiệm và phương pháp phân tích tổn thất đưa ra các hàm hiệu chỉnh cột
áp có chính xác tương đương nhau. Tuy nhiên, phương pháp phân tích tổn thất là
đảm bảo được độ chính xác hơn trong việc xác định công suất yêu cầu để bơm chất
lỏng nhớt. Đồng thời phương pháp này cho phép nghiên cứu ảnh hưởng của các
thông số thiết kế đến độ nhớt và tối ưu hóa việc lựa chọn bơm cũng như các đặc
tính trong quá
trình vận hành bơm với chất lỏng độ nhớt cao.
Cơ sở lý thuyết về nguyên lý của
phương pháp phân tích tổn thất được nêu trong Điều 7. Việc sử dụng các phương
pháp này cần nhiều thông số về kích thước của bơm, mà những thông số này thường
sẽ được cung cấp cho người sử dụng. Khi những thông số này càng chi tiết, thì
việc phân tích tổn thất đưa ra những đánh giá về tính năng của bơm với chất lỏng
nhớt càng chính xác hơn.
Phương pháp này kết nối được các số liệu
thực nghiệm tốt hơn phương pháp HI cũ đã được sử dụng rộng rãi trên toàn thế giới
trong nhiều năm. Sai lệch tiêu chuẩn đối với hệ số hiệu chỉnh cột áp CH
là 0,1. Công suất nhớt tính toán Pvis có sai lệch
tiêu chuẩn là
0,15.
6. Cơ sở lý thuyết
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Trong phần này giải thích cơ sở
lý thuyết của các phương pháp
phân tích tổn thất. Ngoài ra còn đưa ra phương pháp phân tích đánh giá NPSHR
khi bơm làm việc với chất lỏng nhớt. Đây là phương pháp không sử dụng các số liệu
thử nghiệm đã biết.
6.2. Cân bằng và tổn thất công
suất
Phương trình
cân bằng công suất của một bơm không tuần
hoàn được nêu trong công thức (2), công thức này được áp dụng khi bơm nước cũng
như bơm chất lỏng nhớt.
(2)
Trong công thức này (P) là công suất đầu
vào tại khớp nối của bơm; (hvol) là hiệu suất thể tích; (hh) là hiệu suất
thủy lực; (PRR) là tổng tổn
thất do ma sát
giữa bánh công tác với vỏ bơm và trống hoặc đĩa cân bằng áp lực hướng trục, nếu
có, và (Pm) là tổng tổn thất cơ khí ở các ổ đỡ hướng trục và hướng kính
và các bộ phận làm kín trục.
Khi độ nhớt của chất lỏng được
bơm tăng lên, thì số Reynolds giảm, làm cho các hệ số ma sát trong các đường dẫn
thủy lực của bơm tăng giống như xảy ra đối với dòng chảy trong đường ống.
Độ nhớt tăng lên sẽ ảnh hưởng đến tổn thất bơm như sau:
Tổn thất cơ khí, Pm hoàn toàn độc
lập với độ nhớt của chất lỏng được bơm.
Tổn thất thủy lực tương tự như
tổn thất do ma sát đường ống xuất hiện ở đường hút, ở bánh công tác, ở các phần dẫn
hướng trên đường đẩy của bơm.
Trong lý thuyết cơ bản về bơm rô to động lực, cột áp có ích (H) là hiệu số của
cột áp lý thuyết ở bánh công
tác (Hth) trừ đi tổn thất thủy lực (Hl). Theo Thư mục
tài liệu tham khảo [9], [10] và [18], hệ số lệch dòng hoặc trượt dòng của bánh công tác nói chung không bị ảnh hưởng
bởi sự thay đổi độ nhớt do đó cột áp lý thuyết (Hth) không bị ảnh hưởng.
Như vậy tổn thất cột áp giảm do độ nhớt phụ thuộc trước hết tổn thất thủy lực của
dòng chảy nhớt.
Tổn thất thủy lực bao gồm
tổn thất do ma sát, là một hàm của số Reynolds (kích thước bơm, tốc độ
rô to và ảnh hưởng của độ nhớt), độ nhám
bề mặt của đường dẫn thủy lực,
và tổn thất hòa trộn khi mô men dòng chảy biến đổi do phân bố vận tốc không đều.
Sự phân bố vận tốc không đều như vậy hoặc tổn thất hỗn hợp là do tác động của
công chuyển từ cánh dẫn, giảm tốc của chất
lỏng, góc tới giữa dòng chất lỏng và cánh dẫn và thậm chí là chia cắt
cục bộ dòng chảy.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Thông tin trong Thư mục tài liệu tham
khảo [25] đã được sử dụng để tính toán thành công mức độ rò rỉ chất lỏng đi
qua khe hở dọc trục.
Tổn thất do ma sát đĩa là một loại tổn
thất ma sát khác xảy ra ở mọi bề mặt ướt
quay trong bơm. Các tổn thất công suất liên quan (PRR) ảnh hưởng lớn
đến hiệu suất của bơm khi bơm chất lỏng nhớt. Các tổn thất do ma sát
đĩa sinh ra chủ yếu ở trên bề mặt các bánh công tác của kiểu bánh công tác kín
và các chi tiết dùng để cân bằng áp lực hướng trục. Tổn thất tăng lên khi giảm
số Reynolds hoặc tăng độ nhớt; tổn thất này có thể được tính từ các sách giáo
khoa tiêu chuẩn. Các số liệu
hiện tại được cho trong Thư mục tài liệu tham khảo [8].
Có thể lấy các thông tin hữu
ích để tính toán tổn thất do ma sát đĩa và trống ma sát cho kết quả khá tương
quan với các kết quả thực nghiệm, trong Thư mục tài liệu tham khảo [25], [26]
và [27].
Lớp chất lỏng bám lại trên bề mặt bánh
công tác cũng góp thêm một năng lượng hữu ích cho chất lỏng được bơm. Ảnh hưởng
này có tác dụng bù đắp lại một số loại tổn thất thủy lực trình bày ở trên và
cũng là nguyên nhân giải thích tại sao với độ nhớt vừa phải mà cột áp vẫn tăng
lên trong một số trường hợp.
Tổn thất ma sát đĩa có ảnh hưởng lớn đến
công suất tiêu thụ của bơm khi bơm chất lỏng
nhớt. Ảnh hưởng của đường kính bánh công
tác (d2), số vòng quay (N), số vòng quay đặc trưng (ns)
và hệ số cột áp (y) thể hiện
trong công thức (3).
(3)
Ảnh hưởng của độ nhớt lên hiệu suất thể
hiện trên Hình 2 trong đó
thể hiện quan hệ
giữa tỷ số tổn thất ma sát đĩa (PRR) và công suất hữu ích (Pu)
theo độ nhớt, với các thông số số vòng quay đặc trưng ns khác nhau.
Trong trường hợp cụ thể này, tổn thất ma sát đĩa tăng lên khoảng 30 lần khi độ
nhớt tăng lên từ 10-6 đến 3 x 10-3 m2/s
(1 đến 3 000 cSt). Với độ nhớt 3 000 cSt, công suất ma sát đĩa lớn gấp gần 10 lần
công suất hữu ích đối với số vòng quay đặc trưng ns = 10 (Ns = 500) và bằng
50 % của Pu khi ns
= 45 (Ns = 2 300).
CHÚ DẪN:
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Y PRR/Pu
1 ns = 10 (Ns = 500)
2 ns = 20 (Ns = 1 000)
3 ns = 45 (Ns = 2 300)
Hình 2 - Tỷ số
giữa tổn thất do ma
sát đĩa và công suất hữu ích
(Thư
mục tài liệu tham khảo
[7] và [8])
Khi chỉ xem xét tới ảnh hưởng của tổn
thất do ma sát đĩa đến hiệu suất, thì có thể lấy hệ số Ch-RR theo đồ thị
trên Hình 3. Đồ thị
này cho thấy hiệu suất khi bơm chất lỏng nhớt phụ thuộc rất lớn vào số vòng quay đặc
trưng khi chỉ xét
tới ảnh hưởng của ma sát đĩa. Công suất tiêu thụ cũng bị ảnh hưởng tương tự.
Ảnh hưởng của nhiệt: Mọi tổn thất công suất đã loại
trừ tổn thất cơ khí ngoài bơm, bị
tiêu tán dưới dạng nhiệt độ cung cấp cho chất lỏng. Điều này làm tăng nhiệt độ
cục bộ và làm giảm độ nhớt của chất lỏng
so với độ nhớt khối ở nhiệt độ cửa
hút của bơm. Sự tăng nhiệt cục bộ do ứng suất trượt cao chủ yếu ảnh hưởng tới tổn
thất ma sát đĩa và hiệu suất thể tích. Với độ nhớt cao hơn khoảng 1 000 cSt, thì ảnh hưởng
của tăng nhiệt cục bộ của chất lỏng là đáng kể, tuy nhiên mức độ ảnh hưởng
không dễ dàng định lượng được.
Đường đặc tính công suất P = f(Q):
Bởi vì cột áp lý thuyết và tổn thất cơ khí ít bị ảnh hưởng bởi độ nhớt, nên việc tăng
công suất tiêu thụ khi bơm chất lỏng nhớt phần lớn là do tổn thất ma sát đĩa.
Do đó, đường đặc tính công suất bơm chất lỏng nhớt Pvis = f (Q), bị dịch
chuyển tương đối so với công suất khi bơm nước, Pw = f (Q), một giá trị hằng số bằng
với độ tăng của tổn thất ma sát đĩa, ngoại
trừ tại lưu lượng thấp như trên Hình 1.
Cột áp hút thực được yêu cầu (NPSHR) chịu ảnh hưởng
bởi phân bố áp
suất ở gần mép vào
các cánh của bánh công tác. Phân bố áp suất này phụ thuộc vào số Reynolds và tổn
thất thủy lực giữa mặt bích miệng hút bơm và đầu vào bánh công
tác. Những tổn thất này tăng lên khi tăng độ nhớt và sẽ ảnh hưởng tới NPSHR.
Các yếu tố khác ảnh hưởng tới NPSHR là đặc tính nhiệt động lực học của chất lỏng
và sự xâm nhập hoặc khuếch tán bọt khí trong chất lỏng. Tác động qua lại giữa
các yếu tố này được nêu
trong 6.3. Một phương pháp xác định NPSHR đối với chất lỏng nhớt dựa trên các
phân tích cũng được nêu trong 6.3.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
CHÚ DẪN:
X Độ nhớt động học m2/s
Y Ch-RR
1 ns = 45 (NS = 2 300)
2 ns = 20 (NS = 1 000)
3 ns = 10 (NS = 500)
Hình 3 - Ảnh
hưởng của tổn thất
do ma sát đĩa đến hệ số hiệu chỉnh độ nhớt cho hiệu suất
(Xem
Thư mục tài liệu tham khảo [7] và [8])
Ảnh hưởng của độ nhớt đến tổn thất áp suất
ở miệng ống hút và từ đó lên NPSHA cũng phải được xem xét.
6.3. Phương pháp xác định cột áp hút
thực được yêu cầu (NPSHR)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Có sự tác động kép của độ nhớt chất lỏng
được bơm đến NPSHR. Khi độ nhớt tăng lên thì ma sát tăng lên, dẫn đến tăng
NPSHR. Đồng thời, độ nhớt cao hơn sẽ làm giảm các bọt khí và hơi nước
khuếch tán trong chất lỏng. Điều này làm giảm tốc độ hình thành của các bọt khí
và cả ảnh hưởng nhiệt động lực học, làm NPSHR giảm một chút.
Ảnh hưởng của độ nhớt đến NPSHR về thực
chất là một hàm của số Reynolds. Tuy nhiên, ảnh hưởng này không thể được biểu
diễn bằng mối quan hệ đơn giản cho tất cả các thiết kế và các loại bơm khác
nhau. Quy tắc chung là, bơm có kích thước càng lớn và cửa vào bánh công tác bơm
nhẵn hơn và cong hơn, sẽ ít nhạy (ảnh hưởng) với sự thay đổi độ nhớt chất lỏng
được bơm.
Không khí hòa tan trong chất lỏng và
khí xâm nhập vào theo chất lỏng được bơm ở dạng các bọt nhỏ phân tán ảnh hưởng đến NPSHR khác với bọt khí lớn. Nếu
như tốc độ dòng chảy tại đầu vào bơm đủ lớn, thì một số lượng nhỏ bọt khí xâm
nhập sẽ không phân tách và về bản chất sẽ không có hoặc có rất ít ảnh hưởng đến
NPSHR. Sự có mặt của những khối khí lớn
tích lũy lại có ảnh hưởng lớn đến đặc
tính hút của bơm. Nó làm cho đường đặc tính tổng cột áp-NPSHR thay đổi hình dáng từ dạng
“gấp khúc” một cách rõ ràng sang dốc dần xuống đối với cột áp. Điều này làm
tăng điểm có 3 % tổn thất cột áp hoặc nói cách khác, dịch chuyển NPSHR đến một
giá trị cao hơn.
Khi bơm chất lỏng nhớt với tốc độ bơm
thấp hơn, NPSHR quan sát được cao hơn so với tính toán theo các nguyên tắc đã biết.
Tổng quát, sự hình thành của thoát
khí và bay hơi phụ thuộc chủ yếu vào thời gian ở trạng thái áp suất
thấp. Nói chung, thử nghiệm xâm thực tại lưu lượng và tốc độ không đổi với các
điều kiện hút khác nhau không thể được áp dụng cho chất lỏng nhớt, nếu thay đổi
của áp suất hút bằng cách giảm áp suất ở toàn bộ hệ thống thử nghiệm. Bởi vì có những
đặc điểm không giống như nước, chất lỏng ở trong bể không loại được không khí ra một
cách nhanh chóng, mà không khí sẽ dần dần thoát
ra khỏi chất lỏng ở ống hút
và sẽ hình thành bọt
khí ở đầu vào bánh công tác.
Phương pháp tổng quát sau đây được đưa
ra cho mục đích ước tính, nhưng người sử dụng
được khuyến cáo rằng phương pháp này dựa trên phép phân tích chứ không phải dựa
trên số liệu thử nghiệm NPSHR thực. Khi bơm chất lỏng có độ nhớt cao, phạm vi của
NPSHA phải rộng hơn NPSHR và nhà sản xuất bơm phải có khuyến cáo về việc này,
Phương pháp tổng quát này không nên áp dụng cho
các chất lỏng thuộc họ hydrocacbon khi chưa cân nhắc các ảnh hưởng của
nhiệt độ lên các tính chất của chất lỏng. Xem ANS/Hl 1.3.4.16.3[24].
Những công thức sau được sử dụng cho
xây dựng hệ số hiệu chỉnh để điều chỉnh thông số NPSHR khi bơm nước, dựa trên tiêu
chí tổn thất cột áp 3 % tiêu chuẩn, tương ứng với thông số NPSHRvis
của chất lỏng nhớt.
Cho đơn vị tính QBEP-W là m3/h.
NPSHRvix là m, N là r/min, sử dụng công thức (15):
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Cho đơn vị tính QBEP-w là gpm.
NPSHRvix là ft, N là r/min, sử dụng công thức (16):
(5)
Giá trị của biến số hình học đầu
vào cửa hút (A) được lựa chọn như sau:
Đối với các bơm cửa hút ở đầu nút: A =
0,1
Đối với bơm có cửa hút ở bên cạnh (đường
dẫn vào cong một góc khoảng 90° từ cửa vào đến bánh công tác): A = 0,5.
Giá trị NPSHRvis được điều chỉnh
bởi hệ số hiệu chỉnh NPSHR, CNPSH.
NPSHRvis = CNPSH x NPSHR
Lưu lượng không được hiệu chỉnh trong
phương pháp hiệu chỉnh NPSHR. Đối
với lưu lượng tương ứng với các giá trị đã hiệu chỉnh của NPSHRvis, thì sử dụng giá
trị không hiệu chỉnh của Qw.
Một ví dụ của phương pháp hiệu chỉnh NPSHR này
được minh họa trên Hình 4 và Hình
5.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
CHÚ DẪN
X lưu lượng m3/h tại N = 2
950 r/min
Y NPSH - mét
1 Nước
2 Chất lỏng nhớt với s = 0,90 và B = 12,0
Hình 4 - Ví dụ
đồ thị quan hệ giữa
NPSHR theo lưu lượng, đơn vị Mét
Bảng 1 - Một
số ví dụ tính toán (Đơn vị Mét)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
12,0
Trọng lượng riêng của chất lỏng nhớt
(s)
0,90
Số vòng quay trục bơm (N) r/min
2 950
Tỷ số lưu lượng cho hiệu suất lớn nhất
khi bơm nước Qw/QBEP-w
0,60
0,80
1,00
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lưu lượng nước (Qw) m3/h
66
88
110
132
Cột áp hút thực được yêu cầu của nước
(NPSHRw) - m
2,55
3,10
4,15
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hệ số hiệu chỉnh cột áp có hiệu suất
lưu lượng lớn nhất (CH)
0,81
Hệ số hiệu chỉnh cho NPSHR (CNPSH)
1,14
Hiệu chỉnh cột áp hút thực được yêu
cầu của chất lỏng nhớt (NPSHRvis) - m
2,91
3,53
4,73
7,13
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
CHÚ DẪN:
X Lưu lượng gpm tại N = 3 550 r/min
Y NPSH - ft
1 Nước
2 Chất lỏng nhớt với s = 0,90 và B = 12,0
Hình 5 - Ví dụ
đồ thị quan hệ giữa NPSHR
theo lưu lượng, Đơn vị USCS
Bảng 2 - Một
số ví dụ tính toán (Đơn vị USCS)
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
12,0
Trọng lượng riêng của chất lỏng nhớt (s)
0,90
Số vòng quay trục bơm (N) r/min
3 550
Tỷ số lưu lượng cho hiệu suất lớn nhất
khi bơm nước Qw/QBEP-w
0,60
0,80
1,00
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Lưu lượng nước (Qw) gpm
201
268
335
402
Cột áp hút thực yêu cầu của nước
(NPSHRw) - ft
8,37
10,2
13,6
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Hệ số hiệu chỉnh cột áp có hiệu suất
lưu lượng lớn nhất (CH)
0,81
Hệ số hiệu chỉnh cho NPSHR (CNPSH)
1,14
Hiệu chỉnh cột áp hút thực yêu cầu của chất lỏng nhớt (NPSHRvis) - ft
9,54
11,6
15,5
23,4
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
7.1. Quy định chung
Phần nội dung này phân tích một số hạn
chế của phương pháp hiệu chỉnh, các ảnh hưởng đến thiết kế bơm cụ thể, một số lưu ý
về mặt cơ khí và vấn đề làm kín khi bơm chất lỏng nhớt. Nói chung những thông
tin đưa ra chỉ mang tính chất định tính do thiếu các hệ số định lượng.
7.2. Hạn chế
Do hạn chế số liệu thử nghiệm ở tốc độ trên
ns = 40 (Ns = 2 000), việc đánh giá tính năng bằng phương
pháp tổng quát cho bơm có số vòng quay đặc trưng lớn hơn giá trị này không đạt
được độ tin cậy cần thiết.
Các thông số được đưa ra thường dựa
trên cơ sở các thông số của bơm khi bơm nước. Mọi phương pháp hiệu chỉnh
độ nhớt đều không đảm bảo độ tin cậy khi đó phải xem xét phạm vi áp dụng, đặc
biệt là về tốc độ bộ dẫn động bơm.
Quy trình đánh giá đã trình bày đều dựa
trên các thử nghiệm bơm với chất lỏng Newton. Khi đánh giá các chất lỏng phi Newton có thể
cho kết quả sai khác rất lớn.
Một vài nghiên cứu cho thấy cột áp bơm
có xu hướng tăng lên một chút so với bơm nước, khi bơm chất lỏng có độ nhớt lên
đến 180 cSt. Trên thực tế có sự phân tán đáng kể trong nghiên cứu dòng chảy nhớt
và hiện tượng này chỉ đôi khi quan sát được. Điều này có thể được giải thích bởi các yếu tố
có xu hướng làm tăng cột áp khi độ nhớt tăng, như tổn thất bơm đĩa và giảm tổn
thất rò rỉ, bù đắp lại ảnh
hưởng của độ nhớt khối, tính chất có xu hướng giảm cột áp.
7.3. Các ảnh hưởng đến thiết
kế bơm
Dựa trên các số liệu đã cung cấp, các
bơm trong phạm vi 20 ≤ ns ≤ 40 (1 000 ≤ Ns ≤ 2 000) hoàn
toàn có thể đạt được hiệu
suất cao nhất khi bơm chất lỏng nhớt.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Đối với các bánh công tác cánh dẫn phụ
cần bổ sung công suất khi bơm chất lỏng nhớt. Tuy nhiên, do ảnh hưởng của nhiệt độ làm giảm ma sát đĩa nên
hạn chế phần công suất bổ sung.
Đối với các bánh công tác được thiết kế
có hệ số cột áp cao (với số lượng cánh dẫn nhiều hơn và góc xả của cánh dẫn
lớn hơn) có hiệu suất cao hơn nhưng cũng có xu hướng làm đường đặc tính H-Q đi
ngang hoặc dốc xuống đến điểm dừng trong các thử nghiệm bơm nước. Khi bơm chất
lỏng nhớt hơn đường đặc tính H-Q sẽ trở nên dốc hơn. Bởi vậy, các bánh công tác được
thiết kế với hệ số cột áp cao có thể được chấp nhận nếu như đường đặc tính cột áp khi bơm
chất lỏng nhớt tăng
lên đến điểm dừng.
Khe hở hướng trục giữa các cánh của
bánh công tác và thân bơm có ảnh hưởng lớn
đến tổn thất do ma sát đĩa và hiệu suất đối với dòng chảy tầng (bơm chất lỏng
nhớt), nhưng ảnh hưởng không đáng kể đối
với dòng chảy rối. Hai bơm giống hệt nhau có khe hở hướng trục khác nhau có thể
có cùng hiệu suất khi bơm nước, nhưng lại có hiệu suất khác nhau khi bơm chất lỏng
nhớt nếu phạm vi dòng chảy chuyển sang dòng chảy tầng.
Trong khi độ nhám bề mặt (chất lượng
đúc) có ảnh hưởng đáng kể đến hiệu suất khi bơm nước, thì ảnh hưởng của nó khi bơm
chất lỏng nhớt giảm
xuống và về mặt lý thuyết là không có ảnh hưởng đối với dòng chảy tầng.
7.4. Xem xét về mặt cơ khí
Việc thiết kế cơ khí cho bơm,
phần dẫn động và
các khớp nối phải xem xét đến khả năng làm tăng độ nhớt từ đó làm tăng mô men
trong quá trình bơm khởi động khi mà nhiệt
độ chất lỏng thấp hơn nhiệt độ vận hành bình thường.
Các chi tiết bên trong của bơm như trục bơm và các cơ cấu dẫn động
liên quan, phải được kiểm tra để đảm bảo sự đầy đủ cần thiết cho phần mô men tăng
thêm trong bơm sẽ xảy ra.
Kích thước bên ngoài của bộ dẫn động
bơm phải phù hợp khi có yêu cầu tăng mô men khởi động và mô men vận hành. Người
bán phải cung cấp đường đặc tính mô men - số vòng quay đặc trưng của bơm nếu như có liên quan đến kích thước
và thiết kế của bộ dẫn động.
Khớp nối giữa bơm và bộ dẫn động phải
có kích thước sao cho đáp ứng được mô men lớn hơn mô men yêu cầu khi khởi động
và khi làm việc.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Nhìn chung vấn đề làm kín liên quan đến
chất lỏng nhớt là rất phức tạp.
Các nhà sản xuất bộ
phận làm kín phải có những thông tin tư vấn chi tiết.
Các kết cấu làm kín cơ khí hoặc bộ phận
làm kín phải có khả năng làm kín bơm cho một phạm vi thay đổi nhất định của độ
nhớt, bao gồm cả điều kiện chuyển tiếp và nén. Các kết cấu làm kín cơ khí có thể
không hoạt động như tính toán và có thể phải chịu tải cao hơn so với khi bơm nước.
Kết hợp với làm kín cơ khí
là việc bố trí hệ thống rửa các chi tiết làm kín và đường ống kết nối. Trong
nhiều trường hợp các hệ thống phụ gồm các phần tử thứ cấp như các lỗ tháo chất
lỏng và bộ bầu lọc, nút xả có thể bị tắc hoặc không hoạt động đúng khi làm việc
với chất lỏng nhớt. Đường ống thường nối với vỏ bơm và có thể yêu cầu tản nhiệt
hoặc các xem xét khác để đảm bảo việc làm sạch chi tiết làm kín một cách phù hợp.
7.6. Bơm không có cụm làm
kín
Khi sử dụng các loại bơm không có vòng
làm kín cần phải có các xem xét bổ sung. Có hai loại bơm không có vòng làm kín:
Bơm có động cơ được bọc kín và bơm dẫn động từ tính. Với loại bơm động cơ được
bọc kín, rô to của động cơ và ổ đỡ được ngâm vào chất lỏng được bơm. Với loại
bơm dẫn động từ tính, khớp nối dẫn động từ tính và ổ đỡ được ngâm trong chất lỏng
được bơm. Khi đó lực cản nhớt tăng thêm do các bộ phận này được ngâm trong chất
lỏng công tác sẽ làm tăng tổn thất, từ đó làm tăng yêu cầu về công suất tiêu thụ
và mô men khởi động. Với loại bơm không có vòng làm kín, tiến hành gia nhiệt
cho chất lỏng nhớt trong buồng công tác của rô to có thể là một yếu tố làm giảm
một phần tổn thất trong bơm. Hơn nữa, dòng chất lỏng nhiệt độ thấp chảy vào động
cơ hoặc khớp nối từ tính và ổ đỡ có thể giảm xuống. Nhiệt độ tăng do tăng tổn
thất và giảm dòng chất lỏng nhiệt độ thấp cũng phải được xem xét. Ngoài ra,
cũng cần phải đánh giá khả năng bôi trơn của chất lỏng nhớt ở các ổ đỡ, bạc
lót
Phụ lục A
(tham khảo)
Chuyển đổi đơn vị đo độ nhớt động học
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
ncst = độ nhớt động học
tính bằng centi Stockes (cSt) cho chất lỏng được bơm.
vssu = độ nhớt động học tính bằng Giây
Saybolt (SSU).
Để thuận tiện cho việc chuyển đổi đơn
vị, công thức A.1 được sử dụng để chuyển đổi độ nhớt động học SSU sang cST.
Công thức chuyển đổi từ đơn vị SSU sang cSt xây dựng từ một loạt giá trị có được
từ công thức A.2:
Công thức A.1 với 32 SSU ≤ nSSU ≤ 2
316 SSU
(A.1)
Chuyển đổi từ cSt sang SSU
Công thức sau, quy định trong ASTM D
2161-93 (Xuất bản 1999)Xuất bản lần 2[28] dựa trên số
liệu 38 °C (100 °F), được
dùng để chuyển đổi độ nhớt động học cSt sang SSU.
Công thức A.2
Với 1,81 cSt ≤ ncSt ≤ 500 cSt
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Chuyển đổi độ nhớt động lực học (độ nhớt
tuyệt đối) sang độ nhớt
động học
Nếu độ nhớt chất lỏng được bơm cho
theo độ nhớt động lực học hoặc độ nhớt tuyệt đối, nên chuyển đổi
sang độ nhớt động học để sử dụng phương pháp hiệu chỉnh tính năng của bơm. Giá
trị số của độ nhớt động lực học thường được đo bằng centiPoise (cP) hay
Pascal-giây (Pa-s). Độ nhớt động học được tính bằng độ nhớt động lực học (độ nhớt
tuyệt đối) chia cho khối lượng riêng.
Để chuyển đổi, độ nhớt động lực học,
tính bằng centipoise (cP), chia cho khối lượng riêng, tính bằng gam trên
centimét khối (g/cm3) để thu được độ nhớt động học, tính bằng
centistokes (cSt).
Để chuyển đổi độ nhớt động lực học,
tính bằng Pascal-giây (Pa-s), chia cho khối lượng riêng, tính bằng kilôgam trên
mét khối (kg/m3) để thu được độ nhớt động học, tính bằng mét vuông
trên giây (m2/s).
Chuyển đổi từ hệ CGS sang hệ SI
Độ nhớt
Đơn vị CGS
Tỷ số chuyển
đổi Sang đơn vị SI
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Độ nhớt động lực học (m)
Độ nhớt động học
(v)
Poa dơi (P) g/cm-s
Centi Poa dơi (cP)
Stockes (St) (cm2/s)
centi Stockes (cST)
10-1
10-3
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
10-6
Pa-S
Pa-S
m2/s
m2/s
Chuyển đổi từ hệ SI sang hệ CGS
Độ nhớt
Đơn vị SI
Tỷ số chuyển
đổi sang đơn vị CGS
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
Độ nhớt động lực học (m)
Độ nhớt động học
(v)
Pa-s
Pa-s
m2/s
m2/s
101
103
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
106
Poa dơi (P) g/cm-s
Centi Poa dơi (cP)
Stockes (St) (cm2/s)
centi Stockes
(cST)
THƯ MỤC TÀI
LIỆU THAM KHẢO
[1] American National
Standard for Centrifugal Pumps, Std.No.ANSI/HI 1.1-1.6 (Tiêu chuẩn quốc gia Mỹ
về bơm ly tâm).
[2] CONSTANCE, John D., “Using Centrifugal Pumps
for High Viscosity Liquids”, Plant Engineering, Sept.16,
1976, pp.163-166 (“Bơm ly tâm sử dụng với chất lỏng có độ nhớt cao”, Bố trí kỹ thuật).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[4] DAUGHERTY, Robert L, "A Further
investigation of the Performance of Centrifugal Pumps
When Pumping Oils", Bullentin 130, Goulds Pumps, lns,. Seneca Falls,
N.Y., 1926 (“Điều tra thêm đặc tính của bơm khi bơm dầu").
[5] ERICKSON, R.B., “Effect of Viscosity
on the Hydraulic Performance of a 2x1LF-10 Centrifugal Pump”,
Duriron Lab. And DuPont Jackson Lab. Development Report, 5 May 1995 (“Ảnh hưởng của độ nhớt
đến đặc tính thủy
lực của bơm ly tâm 2x1LF-10”).
[6] Flowserve [formerly Durco] Pump
Engineering Manual, Dayton, 1980, pp. 100-103 (Hướng dẫn kỹ thuật bơm dòng).
[7] GULICH, J.F., “Pumping Highly Viscous
Fluids with Centrifugal Pumps”, World Pumps,
1999, No.8 & 9 (Bơm chất lỏng có độ nhớt cao với bơm ty tâm).
[8] GULICH, J.F.,
“Kreiselpumpen. Ein Handbuch fur Entwicklung,
Anladenplanug und Betrieb", Spinger, ISBN 3-540-56987-1, Berlin, 1999, pp
70-72, 107, 538-550.
[9] HAMKINS, C.P., JESKE, H.O and HERGT,
P.H., “Prediction of
Viscosity Effects in Centrifugal Pumps by
Consideration of Indvidual Losses”, (from a lecture at the Third
European Congress Fluid Manchinery for the Oil,
Petrochemical, and Related Industries; The Hague,
Netherlands, 18-20
May 1987) (“Dự đoán các ảnh hưởng độ nhớt đến bơm ly tâm bằng sự tính toán đến
các tổn thất riêng”).
[10] HERGT, P., STOFFEL, B. and
LAUER, H., “Verlustanalyse an
einer Kreiselpumpe auf der Basis von Messungen bei hoher Viskositat des
Fordermediums,” VDI Report
No.424, 1981, pp.29-38.
[11] HOLLAND, F.A.,
CHAPMAN, F.S. “Pumping of
Liquids", Reinhold, N.Y., 1996, pp. 249-256 (“Bơm chất lỏng”).
[12] IPPEN, Arthur T., “The
Influence of
Viscosity on Centrifugal Pump Perfomance”, ASME
Paper No. A-45-57, (Annual Meeting of The American Society of Manchanical
Engineer, New York, N.Y., November 27, 1945) (“Ảnh hưởng của độ nhớt
đến đặc tính của bơm ly
tâm”).
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[14] MOLLENKOPF, G., “Infuence of the Viscosity
of the Liuid to Handled in the Operating Reaction of Centrifugal Pump
with Different Specific Speeds” (in German), Pumpentagung, Karlsruhe
’78, 28 Sept.
1978, Section K10 (“Ảnh hưởng của
độ nhớt chất lỏng đến vận hành trong phản ứng vận hành của bơm ly tâm với các tốc
độ quy định khác nhau”).
[15] OUZIAUX, R., “Influence de la
viscostié et des jeux sur le fonctionnement d'une
pompe centrifuge”, Student
thesis, C.N.A.M France, 12 Des. 1969, pp. 80-86.
[16] SAXENA, S.V.,
KUHLMAN, J. and RENGER, H., “Evaluationg of Performance
Correction Factors for High Power Centrifugal Pipeline Pumps
for Higher Oil Viscosity” (in German), Fachgemeinschaft pumpen im VDMA,
Pumpentagung, Karlsruhe, 30 Sept. -2 Oct.1996, Section C7 (“Đánh giá các hệ số
hiệu chỉnh đặc tính đối với bơm ly tâm công suất cao đối với độ nhớt dầu cao”).
[17] STEPANOFF, A.J.,
“Centrifugal and Axial
Flow Pumps Theory, Design, and
Application", John Wiley, N.Y., 1948,
pp. 310-318 (“Bơm ly tâm và bơm hướng trục, lý thuyết, thiết kế và ứng dụng")
[18] SUKHANNOV, D.Y., “Centrifugal
Pump Operation on Viscous Liquids” (in Russian), MASHGIZ, Moscow 1952 (“Vận
hành bơm ly tâm đối với chất lỏng có độ nhớt”).
[19] TANKA, K., OHASHI,
H., “Performance of
Centrifugal Pumps at
Low Reynolds Number (1st Report, Experimental
Study)” (In
Japaness), Transactions of JESM Ed.50 No.449, Doc. No. 83-007, Jan. 1984, pp.
279-285 (“Đặc tính của bơm ly tâm tại số Reynol thấp”).
[20] TANKA, K., OHASHI, H., “Optimum
Design of Centrifugal Pumps
Highly Viscous Liquids”, Proceedings of the 13th AIHR
Symposium at Montreal, Canda 1986-9 No. 35 (“Thiết kế tối ưu cho bơm ly tâm bơm
chất lỏng có độ nhớt cao”).
[21] TURZO, Z., TAKACS, G.
and ZSUGA, J., “Equations Correct Centrifugal Pump Curves for
Viscosity”, Oil & Gas Journal, 29 May, 2000, pp,
57-61 (“Đường đặc tính bơm ly tâm hiệu chỉnh cân bằng cho độ nhớt”).
[22] “Umrechnung der
Kennlinien von Spiralgehausenpumpen bei Betrieb mit zahen Flussigkeiten”, KSB
Worksheet, No. 38.1, 15 April 1983.
...
...
...
Bạn phải
đăng nhập hoặc
đăng ký Thành Viên
TVPL Pro để sử dụng được đầy đủ các tiện ích gia tăng liên quan đến nội dung TCVN.
Mọi chi tiết xin liên hệ:
ĐT: (028) 3930 3279 DĐ: 0906 22 99 66
[24] American National Standard
for Centrifugal Pumps for
Design and
Application (ANS/HI 1.1-2.2-2000, 1.3-2000) (Tiêu chuẩn quốc gia Mỹ về bơm ly
tâm thiết kế và ứng dụng).
[25] YAMDA, Y.,
“Resistance of Flow Through an Annulus with an Inner Rotating Cylinder”,
BuIIetin JSME, Vol.5, No. 17,
1962, pp.302-310 (Chống lại dòng chất lỏng thông qua vành
dòng chảy với một xy lanh quay bên trong).
[26] DAILY, J.W., NECE,
R.E., “Roughness Effects on Frictional
Ressistance of Encloesd Rotating Disc”, Transactions of ASME, Journal of Basic
Engineering, 1960,
No.82, pp.553-560 (“Ảnh hưởng của độ nhám trên
ma sát kháng của đĩa quay”).
[27] YAMADA, Y., “Torque
Resistance of a Flow Between Rotating Co-axial Cylinders Having Axial
Flow”, Bullentin JSME, Vol.5, No.20, 1962, pp. 634-641 (Mô men xoắn kháng của
dòng chảy giữa xy lanh đồng trục có dòng chảy hướng trục”)
[28] “Standard Practice
for Conversion of Kinematic Viscosity to Saybolt Universal Viscosity or to
Saybolt Furol Viscosity", ASTM Designation D 2161-93 (Reapproved 1999)
with editorial
corrections in August 2000 (“Tiêu chuẩn thực hành cho chuyển đổi độ nhớt động lực
học độ nhớt toàn bộ Saybolt hoặc đến độ nhớt kế Saybolt”).
[29] STEPANOFF, Q.J., “How
Centrifugals Perform When
Pumping Viscous Oils”, Power, June 1949 (Bơm ly tâm thực hiện bơm
dầu có độ nhớt như thế nào”).
[30] MACMEEKIN, R.J.,
“Reynolds Number in the Design of Centrifugal Pumps for
Viscous Liquids”,
Ingersoll-Rand Co internal report, September 1942 (“Số Reynol trong
thiết kế bơm ly tâm dùng cho chất lỏng nhớt”)
1)
Tiêu chuẩn
này sử dụng chữ viết tắt công nghiệp NPSHR trong các ký hiệu toán học NPSHRBEP-W và NPSHRW, chấp nhận sự sai khác so với ISO/TC 115/SC3.